首页> 外文OA文献 >On Free vibration of a Rectangular Plate by Three,Stress Equation
【2h】

On Free vibration of a Rectangular Plate by Three,Stress Equation

机译:Rectangular plate by Three,SERUS Equation ON Free vibration

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The free vibration of a rectangular plate, especially with all edges free or clamped,has already been studied,because this is a very interesting characteristic value problem in the theory of elastity. A quite different method from previous studies is described in this paper. A plate is imagined to be divided into some numbers of strips (Finite Strip Method),and the deflection w_r and M_r=一Nd^2w/dy^2)_r on the nodal line r are regarded as unknown values. Then the equilibrium equation of the shearing force and the continuity equation of the slope (three-stress equation)on r are corresponding to w_r,M_r,and the frequency equation can be obtained assuming that the inertia force acts on every node as a line load. The number of strips n and terms m which comes from Finite Fourier Transforms have influence on the accuracy of the quantity of natural frequency. Numerical results are as follows ; we sdould take ,n≧4 in case of all edges simply supported rectangular plate in order to decrease error in less than 5%,n≧5 in case of the plate with two opposite edges simply supported and the other two clamped。n≧4 and ,m≧6 in sase of all edges clamped square plate. The rectangular plate with stepwise varying thickness in one direction and equithickness in another direction will also be treated by the same method for any boundary conditions.
机译:已经研究了矩形板的自由振动,尤其是所有边缘自由或被夹紧的自由振动,因为这是弹性理论中一个非常有趣的特征值问题。本文介绍了一种与以前的研究完全不同的方法。假设将一块板划分为若干条(有限条法),并且将节点线r上的挠度w_r和M_r =一Nd ^ 2w / dy ^ 2)_r视为未知值。然后,剪力的平衡方程和斜坡的连续性方程(三个应力方程)分别对应于w_r,M_r,并假设惯性力作为线荷载作用在每个节点上,则可以得到频率方程。 。来自有限傅立叶变换的条带数量n和项m对固有频率数量的准确性有影响。数值结果如下;为了使误差全部减小,我们取,n≥4,以便将误差减小到5%以内;对于具有两个相对边缘的板,则n≥5。两个夹边,n≥4和,m≥6。对于任何边界条件,也将通过相同的方法处理在一个方向上厚度逐步变化而在另一个方向上等厚度的矩形板。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号