首页> 外文OA文献 >A survey on computational intelligence approaches for predictive modeling in prostate cancer
【2h】

A survey on computational intelligence approaches for predictive modeling in prostate cancer

机译:前列腺癌预测建模的计算智能方法研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Predictive modeling in medicine involves the development of computational models which are capable of analysing large amounts of data in order to predict healthcare outcomes for individual patients. Computational intelligence approaches are suitable when the data to be modelled are too complex forconventional statistical techniques to process quickly and eciently. These advanced approaches are based on mathematical models that have been especially developed for dealing with the uncertainty and imprecision which is typically found in clinical and biological datasets. This paper provides a survey of recent work on computational intelligence approaches that have been applied to prostate cancer predictive modeling, and considers the challenges which need to be addressed. In particular, the paper considers a broad definition of computational intelligence which includes evolutionary algorithms (also known asmetaheuristic optimisation, nature inspired optimisation algorithms), Artificial Neural Networks, Deep Learning, Fuzzy based approaches, and hybrids of these,as well as Bayesian based approaches, and Markov models. Metaheuristic optimisation approaches, such as the Ant Colony Optimisation, Particle Swarm Optimisation, and Artificial Immune Network have been utilised for optimising the performance of prostate cancer predictive models, and the suitability of these approaches are discussed.
机译:医学中的预测建模涉及计算模型的开发,该模型能够分析大量数据,以预测单个患者的医疗保健结果。当要建模的数据太复杂而常规统计技术无法快速,有效地处理时,计算智能方法是适用的。这些先进的方法基于专门开发的数学模型,用于处理通常在临床和生物学数据集中发现的不确定性和不精确性。本文提供了对已应用于前列腺癌预测模型的计算机智能方法的最新研究成果,并考虑了需要解决的挑战。特别是,本文考虑了计算智能的广义定义,包括进化算法(也称为元论优化,自然启发优化算法),人工神经网络,深度学习,基于模糊的方法以及这些方法的混合以及基于贝叶斯的方法和Markov模型。元启发式优化方法(例如蚁群优化,粒子群优化和人工免疫网络)已用于优化前列腺癌预测模型的性能,并讨论了这些方法的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号