首页> 外文OA文献 >The superfield quantisation of a superparticle action with an extended line element
【2h】

The superfield quantisation of a superparticle action with an extended line element

机译:具有扩展线元的超粒子作用的超场量化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A massive superparticle action based on the generalised line element in N = 1 global superspace is quantised canonically. A previous method of quantising this action, based on a Fock space analysis, showed that states existed in three supersymmetric multiplets, each of a different mass. The quantisation procedure presented uses the single first class constraint as an operator condition on a general N = 1 superwavefunction. The constraint produces coupled equations of motion for the component wavefunctions. Transformations of the component wavefunctions are derived that decouple the equations of motion and partition the resulting wavefunctions into three separate supermultiplets. Unlike previous quantisations of superparticle actions in N = 1 global superspace, the spinor wavefunctions satisfy the Dirac equation and the vector wavefunctions satisfy the Proca equation. The off-shell closure of the commutators of the supersymmetry transformations, that include mass parameters, are derived by the introduction of auxiliary wavefunctions. To avoid the ghosts arising in a previous Fock space quantisation an alternative conjugation is used in the definition of the current, based on a Krein space approach.
机译:规范地量化了基于N = 1全局超空间中的广义线元素的大规模超粒子作用。一种基于Fock空间分析的量化该动作的先前方法表明,状态存在于三个超对称多重态中,每个多重态质量不同。提出的量化程序使用单个的第一类约束作为一般N = 1的超波函数的算子条件。约束产生分量波函数的耦合运动方程。推导了分量波函数的变换,这些变换解耦了运动方程,并将得到的波函数划分为三个单独的超多重波。与以前在N = 1全局超空间中对超粒子作用进行量化不同,自旋波函数满足Dirac方程,矢量波函数满足Proca方程。超对称变换的换向器的壳外闭合(包括质量参数)是通过引入辅助波函数得出的。为了避免在先前的Fock空间量化中出现鬼影,在当前的定义中使用了一种替代的共轭方法,该方法基于Kerin空间方法。

著录项

  • 作者

    Fitzgerald, PL;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号