首页> 外文OA文献 >Chemical shift optimization and ensemble averaging in protein NMR spectroscopy
【2h】

Chemical shift optimization and ensemble averaging in protein NMR spectroscopy

机译:蛋白质NMR光谱中的化学位移优化和整体平均

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A problem often encountered in multidimensional NMR spectroscopy is that an existingudchemical shift list of a protein has to be used to assign an experimental spectrum but does not fitudsufficiently well for a safe assignment. A similar problem occurs when temperature or pressure series ofudn-dimensional spectra are to be evaluated automatically. Two slightly different algorithms,udAUREMOL-SHIFTOPT1 and AUREMOL-SHIFTOPT2 have developed here that fulfill this task.udTheir performance is analyzed employing a set of simulated and experimental two-dimensional andudthree-dimensional spectra obtained from three different proteins. Peak probability and atom type basedudweighted averaging is introduced in order to reduce the influence of the wrong assignment during theudassignment process.udChemical shift prediction programs often use a single energy minimized structure as input, butudensemble averaging of chemical shifts gives better prediction values irrespective of the predictionudmethod. This is in agreement with the fact that proteins in solution occur in multiple conformationaludstates in fast exchange on the chemical shift time scale. However, in contrast to the real conditions inudsolution at ambient temperatures, the chemical shift prediction methods seems optimal to predict theudlowest energy ground state structure that is only weakly populated under these conditions. An analysisudof the data shows that a chemical shift prediction can be used as measure to define the minimum size ofudthe structural bundle required for a faithful description of the structural ensemble.udReliable homo- and heteronuclear chemical shift distributions are required for the automatedudassignment procedures. However, the statistics derived from the Biological Magnetic Resonance Bankud(BMRB) is not clean and is not structurally unbiased. Therefore, refined chemical shift statistics wasudcreated from a structural database of non-homologous proteins (Nh3D) that comprises 806 differentudthree-dimensional structures. The chemical shift data base was created by calculating the resultingudchemical shifts with the prediction programs SHIFTS and SHIFTX. Analysis of the obtained data setudshows that unbiased chemical shift statistics improves the a priori probability values for resonanceudassignment, removes ambiguities in assignment to certain level and helps to make stereochemicaludassignments.
机译:多维NMR光谱法中经常遇到的一个问题是,必须使用蛋白质的现有化学位移列表来分配实验光谱,但是对于安全分配而言,它并不合适。当要自动评估维数光谱的温度或压力序列时,会发生类似的问题。此处已开发出两种略有不同的算法来完成此任务。udAUREMOL-SHIFTOPT1和AUREMOL-SHIFTOPT2。使用一组从三种不同蛋白质获得的模拟和实验二维和三维光谱分析了它们的性能。引入基于峰值概率和原子类型的加权平均,以减少在分配过程中错误分配的影响。 ud化学位移预测程序通常使用单个能量最小化的结构作为输入,但是化学位移的平均求和与预测 udmethod无关的更好的预测值。这与以下事实一致:溶液中的蛋白质在化学位移时间尺度上以快速交换的形式以多种构象/ udstates形式出现。但是,与环境温度下溶解的实际条件相反,化学位移预测方法似乎最适合预测在这些条件下仅弱填充的最低能量基态结构。对数据的分析表明,化学位移预测可以用作定义对结构整体进行忠实描述所需的结构束的最小尺寸的度量。ud要求可靠的同核和异核化学位移分布自动化分配过程。但是,从生物磁共振库 ud(BMRB)得出的统计数据并不干净,并且在结构上也没有偏见。因此,从包含806个不同三维结构的非同源蛋白质(Nh3D)结构数据库中创建了精确的化学位移统计数据。化学位移数据库是通过使用预测程序SHIFTS和SHIFTX计算所得的 udchemical位移而创建的。对获得的数据集的分析表明,无偏的化学位移统计可提高共振/分配的先验概率值,将分配中的歧义消除到一定水平,并有助于进行立体化学/分配。

著录项

  • 作者

    Baskaran Kumaran;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号