首页> 外文OA文献 >Break date estimation for models with deterministic structural change
【2h】

Break date estimation for models with deterministic structural change

机译:具有确定性结构变化的模型的失效日期估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this article, we consider estimating the timing of a break in level and/or trend when the order of integration and autocorrelation properties of the data are unknown. For stationary innovations, break point estimation is commonly performed by minimizing the sum of squared residuals across all candidate break points, using a regression of the levels of the series on the assumed deterministic components. For unit root processes, the obvious modification is to use a first differenced version of the regression, while a further alternative in a stationary autoregressive setting is to consider a GLS-type quasi-differenced regression. Given uncertainty over which of these approaches to adopt in practice, we develop a hybrid break fraction estimator that selects from the levels-based estimator, the first-difference-based estimator, and a range of quasi-difference-based estimators, according to which achieves the global minimum sum of squared residuals. We establish the asymptotic properties of the estimators considered, and compare their performance in practically relevant sample sizes using simulation. We find that the new hybrid estimator has desirable asymptotic properties and performs very well in finite samples, providing a reliable approach to break date estimation without requiring decisions to be made regarding the autocorrelation properties of the data.
机译:在本文中,当数据的积分顺序和自相关属性未知时,我们考虑估计水平和/或趋势中断的时间。对于固定式创新,通常使用对假定确定性分量的级数回归,通过使所有候选断点的残差平方和最小化来执行断点估计。对于单位根过程,明显的修改是使用回归的第一差分版本,而在固定自回归设置中的另一种选择是考虑GLS型准差分回归。考虑到在实践中采用哪种方法的不确定性,我们开发了一种混合中断分数估计器,它从基于水平的估计器,基于一阶差分的估计器和一系列基于准差分的估计器中选择,实现残差平方的全局最小和。我们建立了所考虑的估计量的渐近性质,并使用仿真在实际相关的样本量中比较了它们的性能。我们发现,新的混合估计量具有理想的渐近性质,并且在有限样本中表现良好,从而提供了一种可靠的方法来进行中断日期估计,而无需就数据的自相关性质做出决定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号