首页> 外文OA文献 >Mechanical properties of Ti-6Al-4V selectively laser melted parts with body-centred-cubic lattices of varying cell size
【2h】

Mechanical properties of Ti-6Al-4V selectively laser melted parts with body-centred-cubic lattices of varying cell size

机译:具有不同晶胞尺寸的体心立方晶格的Ti-6Al-4V选择性激光熔化零件的机械性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Significant weight savings in parts can be made through the use of additive manufacture (AM), a process which enables the construction of more complex geometries, such as functionally graded lattices, than can be achieved conventionally. The existing framework describing the mechanical properties of lattices places strong emphasis on one property, the relative density of the repeating cells, but there are other properties to consider if lattices are to be used effectively. In this work, we explore the effects of cell size and number of cells, attempting to construct more complete models for the mechanical performance of lattices. This was achieved by examining the modulus and ultimate tensile strength of latticed tensile specimens with a range of unit cell sizes and fixed relative density. Understanding how these mechanical properties depend upon the lattice design variables is crucial for the development of design tools, such as finite element methods, that deliver the best performance from AM latticed parts. We observed significant reductions in modulus and strength with increasing cell size, and these reductions cannot be explained by increasing strut porosity as has previously been suggested. We obtained power law relationships for the mechanical properties of the latticed specimens as a function of cell size, which are similar in form to the existing laws for the relative density dependence. These can be used to predict the properties of latticed column structures comprised of body-centred-cubic (BCC) cells, and may also be adapted for other part geometries. In addition, we propose a novel way to analyse the tensile modulus data, which considers a relative lattice cell size rather than an absolute size. This may lead to more general models for the mechanical properties of lattice structures, applicable to parts of varying size.
机译:通过使用增材制造(AM),可以显着减少零件的重量,与传统上实现的工艺相比,这种工艺能够构造更复杂的几何形状,例如功能渐变的晶格。描述晶格力学性能的现有框架非常强调一种特性,即重复单元的相对密度,但是要有效使用晶格还需要考虑其他特性。在这项工作中,我们探索细胞大小和细胞数量的影响,尝试为晶格的机械性能构建更完整的模型。这是通过检查晶格拉伸试样的模量和极限拉伸强度来实现的,该试样具有一定范围的晶胞尺寸和固定的相对密度。了解这些机械性能如何取决于晶格设计变量对于开发设计工具(例如有限元方法)至关重要,这些工具可以使AM晶格零件发挥最佳性能。我们观察到模数和强度随晶胞尺寸的增加而显着降低,并且这些降低不能通过增加孔隙率来解释。我们获得了晶格标本的机械性能随晶胞尺寸变化的幂定律关系,其形式与现有的相对密度依赖性定律相似。这些可用于预测由体心立方(BCC)单元组成的网格列结构的特性,也可适用于其他零件几何形状。另外,我们提出了一种分析拉伸模量数据的新颖方法,该方法考虑了相对晶格尺寸而不是绝对尺寸。这可能会导致适用于各种尺寸零件的更为通用的晶格结构力学性能模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号