首页> 外文OA文献 >Partially smooth variational principles and applications
【2h】

Partially smooth variational principles and applications

机译:部分平滑的变分原理和应用

摘要

Smooth variational analysis has been highly successful in providing tools for the study of non-smooth analysis and optimization problems, especially when married to viscosity concepts. Outside of smoothable Banach spaces (thus, notably in L1 spaces) general constructions such as those of Ioffe require a largely nonconstructive intersection over smooth or finite-dimensional subspaces. Equally, outside of Asplund or Frechet spaces the most puissant results fail. Nonetheless, many problems inevitably lie in large (nonsmooth or non-Frechet) spaces, X . In such settings the `target' set may be significantly smaller and so lie in a much more richly renormable space, Y . For example, in most contexts existence results in control will require some measure of weak compactness of an associated lower level set, S. This set perforce lies in a weakly compactly generated and so smoothable subspace Y , and it is often the case that only variations in that subspace need be examined. Our intention in this paper is to provide variational tools in such settings and to present some of the possible applications. The organization of the paper is as follows. In the next section we define the underlying concept of partial viscosity subdifferentials that allows us to derive the variational results alluded to above. Then in Section 3 we study sufficient conditions ensuring the existence of the appropriately "nice" renorms of the underlying space. In Section 4 we give a version of the Borwein-Preiss smooth variational principle in a Banach spaces with a partially smooth equivalent norm: this is the basis for our variational arguments. Section 5 is devoted to a non-local fuzzy sum rule extending the result in for smooth Banach spaces. This non-local fuzzy sum rule marries the smooth variational principle with a decoupling technique of Crandall and Lions. We then use this rule to deduce and extend several other important results in nonsmooth analysis: (i) the local fuzzy sum rule in Section 6, (ii) Zagrodny's approximate mean value theorem in Section 7, (iii) the Clarke-Ledyaev mean value inequality in Section 8 and the Kruger-Mordukhovich extremal principle in Section 9. In Section 10 we discuss the relationship between the partial viscosity subdifferential and other frequently used subdifferential concepts. A brief application to distance functions and best approximations in Section 11 concludes the paper.
机译:平滑变分分析在提供用于研究非平滑分析和优化问题的工具方面非常成功,尤其是与粘度概念结合使用时。在平滑的Banach空间之外(因此,尤其是在L1空间中),诸如Ioffe的一般构造需要在光滑或有限维子空间上具有很大的非构造相交。同样,在Asplund或Frechet空间之外,最令人讨厌的结果失败。但是,许多问题不可避免地存在于较大的空间(非平滑或非Frechet)X中。在这样的设置中,“目标”集可能会更小,因此位于更丰富的可重新规范空间Y中。例如,在大多数情况下,要使控制权存在,就需要对相关的较低级别集S进行某种程度的弱紧致度量。此集合的作用力在于生成的紧致程度如此弱且如此平滑的子空间Y,并且通常情况下,只有变化在那个子空间中需要检查。本文的目的是在这种情况下提供变体工具,并介绍一些可能的应用。本文的结构如下。在下一节中,我们定义了部分粘度亚微分的基本概念,该概念使我们能够得出上面提到的变化结果。然后,在第3节中,我们研究了确保存在适当的“良好”基础空间规范的充分条件。在第4节中,我们在Banach空间中给出了Borwein-Preiss光滑变分原理的一个版本,具有部分光滑等价范数:这是我们变分论证的基础。第5节专门介绍了一个非局部模糊和规则,将结果扩展为平滑Banach空间。该非局部模糊和规则将光滑变分原理与Crandall和Lions的解耦技术结合在一起。然后,我们使用此规则来推导和扩展其他一些在非平滑分析中的重要结果:(i)第6节中的局部模糊和规则,(ii)第7节中的Zagrodny近似均值定理,(iii)Clarke-Ledyaev平均值第8节中的不等式和第9节中的Kruger-Mordukhovich极值原理。在第10节中,我们讨论了部分粘度亚微分与其他常用的亚微分概念之间的关系。在第11节中简要介绍了距离函数和最佳逼近。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号