首页> 外文OA文献 >Magneto-optical circular dichroism properties of fept layers with perpendicular anisotropy
【2h】

Magneto-optical circular dichroism properties of fept layers with perpendicular anisotropy

机译:垂直各向异性各向异性层的磁光圆二色性

摘要

Magneto-optical techniques allow the investigation of the reversal process in magnetic surfaces and granular systems and of their electronic structure. In the case of magnetic metals and their surfaces the use of VIS or nIR lights allow to explore the interband and intrabands transitions that involves the 3d band. Due to the magneto-optical effect is related with the spin-orbit coupling, this technique is quite sensible to structural and chemical orders which determine also the magnetic anisotropy [1]. In this work we investigate the magneto-optical properties at different wavelengths of nanometric films based in epitaxial FePt and Fe-FePt bilayer that exhibit perpendicular anisotropy. Magnetic circular dichroism technique (MCD) is used because it allows to investigate the magneto-optical properties and the reversal process of the entire layers. FePt films of 10 nm were deposited by RF sputtering directly on a MgO (100) single-crystal in order to obtain the epitaxial growth. The growth was performed at substrate temperatures in the range 415?C and 430 ?C. The films were obtained by alternating the deposition of very thin Fe and Pt layers with nominal thickness of about 0.2 nm. The chosen ratio between the individual thickness corresponds to a nominal atomic composition of Fe53Pt47. The ordered L10 phase growths epitaxially [2] with the c-axis perpendicular to the substrate. Lower chemical order was observed in the film annealed at 430?C. On this film a second layer of 5 nm of Fe was deposited which constitutes the bilayer Fe-FePt. The MCD hysteresis loops at 1.7 K were recorded using different continuous lasers covering the VIS-nIR spectrum range (476 nm - 904 nm). Details of the experimental set-up are described in [3]. The MCD hysteresis loop of the FePt film annealed at 415?C and measured with a wavelength 476.5 nm is represented in the figure 1. A square hysteresis loop is observed with a negative saturation MCD (-5.3 mrad) for positive magnetic fields. The large squareness ratio, near 1, and the large coercive field of 2.9 T confirm the high quality of the ordered c-axis epitaxial film and the orientation of the easy axis in this direction. The shape of MCD hysteresis loop measured using 632.8 nm is very similar to the measured with 476.5 nm, but the saturation MCD is positive and approximately 5 times smaller (+1.18 mrad). In the figure 2 the MCD hysteresis of the Fe-FePt film measured with 514.5 nm, 632.8 nm and 904.0 nm are represented. The hysteresis loop measured with the blue beam exhibits positive MCD in the saturation while with the red and n-IR beams that values are negative. Moreover the absolute saturation MCD increases with the increase of the wavelength being 13.9 mrad, -20,6 mrad and -23,4 mrad for the beams with wavelength 514.5 nm, 632.8 nm and 904.0 nm, respectively. The obtained hysteresis indicate the presence of two critical field, HC1 ≈1.3 T and HC2 ≈0.64 T being the coercive field 0.13 T. The reversal process does not indicate a full exchange coupling between the hard and soft layers. In fact micromagnetic calculations [4] indicate that 5 nm Fe layer is a thick- ness for which decoupling could be possible. Finally the shape of the hysteresis loop measured with 514,5 nm is slightly different of the loops measured with largest wavelengths, which are equal. The MCD values measured with 514,5 nm in the magnetic field range between HC1 and HC2 are small- er than the measured with larger wavelength. This suggests that modification of the MO signal due to the change of the wavelength is not similar in the Fe and FePt layers. Comparing the results, quantitatively the Fe-FePt film shows largest MCD signal than the FePt film. This difference can be due to larger Fe contain but it is not enough for explain the differences. Moreover in the Fe-FePt film the MCD changes from positive to negative values for largest wavelengths and the absolute MCD increases. The opposite behaviours are observed in the FePt film. Spectroscopic measurements are in progress to clarify these results. [1] A. Cebollada et al. Phys. Rev. B 50 (1994) 3419; H. Ebert,G.Y. Guo, G. Sch?tz IEEE Trans. Magn. 31 (1995) 3301. [2] F. Casoli, et al. IEEE Trans. Magn. 41 (2005) 3223. [3] L. Cavigli et al. J. Magn. Magn. Mater. 316 (2007) 798. [4] G. Asti et al. Phys. Rev. B 73 (2006) 094406
机译:磁光技术可以研究磁性表面和颗粒系统中的逆过程及其电子结构。在磁性金属及其表面的情况下,使用VIS或nIR灯可以探索涉及3d波段的带间和带内过渡。由于磁光效应与自旋轨道耦合有关,因此该技术对决定磁各向异性的结构和化学顺序非常敏感[1]。在这项工作中,我们研究了基于外延FePt和Fe-FePt双层表现出垂直各向异性的纳米薄膜在不同波长的磁光特性。使用磁性圆二色性技术(MCD)是因为它允许研究整个层的磁光特性和反转过程。通过RF溅射将10 nm的FePt膜直接沉积在MgO(100)单晶上,以获得外延生长。生长是在基板温度为415°C至430°C的范围内进行的。通过交替沉积标称厚度约为0.2 nm的非常薄的Fe和Pt层获得薄膜。各个厚度之间选择的比率对应于Fe53Pt47的标称原子组成。有序的L10相以c轴垂直于基底的方式外延生长[2]。在430℃退火的膜中观察到较低的化学级。在该膜上沉积了第二层5 nm的Fe,该第二层构成了双层Fe-FePt。使用覆盖VIS-nIR光谱范围(476 nm-904 nm)的不同连续激光器记录了1.7 K时的MCD磁滞回线。实验设置的详细信息在[3]中进行了描述。 FePt膜在415?C退火并用476.5 nm波长测量的MCD磁滞回线如图1所示。对于正磁场,在负饱和MCD(-5.3 mrad)处观察到方形磁滞回线。较大的矩形比(接近1)和2.9 T的大矫顽场证实了有序c轴外延膜的高质量和易轴在该方向上的取向。使用632.8 nm测得的MCD磁滞回线的形状与使用476.5 nm测得的MCD磁滞回线的形状非常相似,但饱和MCD为正,大约小5倍(+1.18 mrad)。在图2中,示出了用514.5nm,632.8nm和904.0nm测量的Fe-FePt膜的MCD磁滞。用蓝色光束测得的磁滞回线在饱和度下显示正MCD,而对于红色和n-IR光束测得的磁滞环值为负。此外,对于波长为514.5nm,632.8nm和904.0nm的光束,绝对饱和度MCD随着波长分别为13.9mrad,-20,6mrad和-23,4mrad的增加而增加。所获得的磁滞表明存在两个临界场,HC1≈1.3T和HC2≈0.64T是矫顽场0.13T。反转过程并不表示硬层和软层之间存在完全交换耦合。实际上,微磁计算[4]表明5nm的铁层是可以去耦的厚度。最后,用514,5 nm测量的磁滞回线的形状与使用最大波长测量的回线的形状稍有不同,最大波长相等。在HC1和HC2之间的磁场范围内,在514,5 nm处测得的MCD值小于在较大波长下测得的MCD值。这表明在Fe和FePt层中,由于波长的变化而引起的MO信号的修改不相似。比较结果,定量地显示Fe-FePt膜比FePt膜显示出最大的MCD信号。这种差异可能是由于含铁量较大,但不足以解释这种差异。此外,在Fe-FePt膜中,对于最大波长,MCD从正值变为负值,并且绝对MCD增加。在FePt膜中观察到相反的行为。光谱测量正在进行中,以澄清这些结果。 [1] A. Cebollada等。物理B 50版(1994)3419;埃伯特(G.Y.) Guo,G. Sch?tz IEEE Trans。真是的31(1995)3301。[2] F. Casoli等。 IEEE Trans。真是的[41] L. Cavigli等,J.Biol.Chem.41(2005)3223。 J.Magn。真是的母校316(2007)798。[4] G. Asti等。物理版本B 73(2006)094406

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号