首页> 外文OA文献 >An Introduction to Loss Tolerant Tree Encoding for Large Scale Linear Optical Quantum Computing:Quantum Engineering CDT (Individual Project B Report)
【2h】

An Introduction to Loss Tolerant Tree Encoding for Large Scale Linear Optical Quantum Computing:Quantum Engineering CDT (Individual Project B Report)

机译:大规模线性光量子计算的容错树编码简介:量子工程CDT(单个项目B报告)

摘要

One of the main challenges facing linear optical quantum computing (LOQC) is loss. Each implementation of LOQC suffers some significant degree of loss, be it from reflective bulk optics, interfaces in fibre networks, or scattering and free-carrier absorption in integrated devices. For fault tolerant measurement-based quantum computation one typically requires a large, highly entangled qubit lattice on which quantum error correction is performed. While such schemes can account for certain loss levels [1–3], these thresholds are still too low for practical use. To overcome this loss-tolerant protocols must be developed.In this report we shall therefore investigate a modern loss-tolerance scheme proposed by Varnava, Browne and Rudolph, known as counterfactual error correction. For such we shall specifically consider photonic implementations. To provide a complete understanding of the scheme, the prerequisite theory will also be revised. The report is hence structured as follows: Section 2 provides a brief introduction to measurement-based quantum computing (MBQC) and the cluster state picture; Section 3 shall introduce the stabiliser formalism and its use for efficiently describing cluster states; Section 4 describes modern approaches to constructing cluster states; Section 5 then details the loss tolerant scheme in question; Lastly Section 6 concludes by offering some areas for further research towards practical implementation of the scheme.
机译:线性光学量子计算(LOQC)面临的主要挑战之一是损耗。 LOQC的每种实现都会遭受某种程度的损失,无论是由于反射体光学器件,光纤网络中的接口,还是集成设备中的散射和自由载流子吸收。对于基于容错测量的量子计算,通常需要一个较大的,高度纠缠的量子比特晶格,在其上执行量子误差校正。尽管这样的方案可以解决某些损失水平[1-3],但这些阈值对于实际应用而言仍然太低。为了克服这种容错协议,必须开发。因此,在本报告中,我们将研究Varnava,Browne和Rudolph提出的一种现代的容错方案,称为反事实纠错。为此,我们将专门考虑光子实现。为了全面了解该方案,前提条件理论也将进行修订。因此,该报告的结构如下:第2节简要介绍了基于测量的量子计算(MBQC)和簇状态图;第3节应介绍稳定器形式主义及其在有效描述簇状态方面的用途;第4节介绍了构建簇状态的现代方法。然后,第5节详细介绍了相关的容错方案;最后,第6节总结了一些领域,以进一步研究该计划的实际实施。

著录项

  • 作者

    Morley-Short Sam;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号