首页> 外文OA文献 >HAPRAP:a haplotype-based iterative method for statistical fine mapping using GWAS summary statistics
【2h】

HAPRAP:a haplotype-based iterative method for statistical fine mapping using GWAS summary statistics

机译:HAPRAP:一种基于单倍型的迭代方法,用于使用GWAS摘要统计进行统计精细映射

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fine mapping is a widely used approach for identifying the causal variant(s) at disease-associated loci. Standard methods (e.g. multiple regression) require individual level genotypes. Recent fine mapping methods using summary-level data require the pairwise correlation coefficients () of the variants. However, haplotypes rather than pairwise , are the true biological representation of linkage disequilibrium (LD) among multiple loci. In this paper, we present an empirical iterative method, HAPlotype Regional Association analysis Program (HAPRAP), that enables fine mapping using summary statistics and haplotype information from an individual-level reference panel.Simulations with individual-level genotypes show that the results of HAPRAP and multiple regression are highly consistent. In simulation with summary-level data, we demonstrate that HAPRAP is less sensitive to poor LD estimates. In a parametric simulation using Genetic Investigation of ANthropometric Traits (GIANT) height data, HAPRAP performs well with a small training sample size (N2000) while other methods become suboptimal. Moreover, HAPRAP’s performance is not affected substantially by SNPs with low minor allele frequencies. We applied the method to existing quantitative trait and binary outcome meta-analyses (human height, QTc interval and gallbladder disease); all previous reported association signals were replicated and two additional variants were independently associated with human height. Due to the growing availability of summary level data, the value of HAPRAP is likely to increase markedly for future analyses (e.g. functional prediction and identification of instruments for Mendelian randomization). The HAPRAP package and documentation are available online: http://apps.biocompute.org.uk/haprap/
机译:精细作图是一种广泛使用的方法,用于识别疾病相关基因座上的因果变异。标准方法(例如多元回归)需要个体水平的基因型。最近使用摘要级别数据的精细映射方法需要变量的成对相关系数()。但是,单倍型而不是成对的,是多个基因座之间连锁不平衡(LD)的真正生物学代表。在本文中,我们提出了一种经验迭代方法HAPlotype区域关联分析程序(HAPRAP),该方法可以使用摘要统计数据和来自单个级别参考面板的单倍型信息进行精细映射。单个级别基因型的模拟表明HAPRAP的结果和多元回归高度一致。在汇总级别数据的模拟中,我们证明了HAPRAP对不良LD估计的敏感性较低。在使用人体特征的遗传调查(GIANT)高度数据进行的参数模拟中,HAPRAP在较小的训练样本量(N <2000)下表现良好,而其他方法则表现欠佳。而且,HAPRAP的性能不受次要等位基因频率低的SNP的影响很大。我们将该方法应用于现有的定量性状和二元结果荟萃分析(人的身高,QTc间隔和胆囊疾病);复制了所有先前报道的关联信号,并且另外两个变体与人类身高独立关联。由于汇总级别数据的可用性不断提高,因此HAPRAP的价值可能会在未来的分析中显着增加(例如,功能预测和孟德尔随机化工具的识别)。 HAPRAP软件包和文档可在线获得:http://apps.biocompute.org.uk/haprap/

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号