首页> 外文OA文献 >Deformation mechanisms in ionic liquid spun cellulose fibers
【2h】

Deformation mechanisms in ionic liquid spun cellulose fibers

机译:离子液体纺纤维素纤维的变形机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The molecular deformation and crystal orientation of a range of next generation regenerated cellulose fibers, produced from an ionic liquid solvent spinning system, are correlated with macroscopic fiber properties. Fibers are drawn at the spinning stage to increase both molecular and crystal orientation in order to achieve a high tensile strength and Young's modulus for potential use in engineering applications. Raman spectroscopy was utilized to quantify both molecular strain and orientation of fibers deformed in tension. X-ray diffraction was used to characterize crystal orientation of single fibers. These techniques are shown to provide complimentary information on the microstructure of the fibers. A shift in the position of a characteristic Raman band, initially located at ∼1095 cm, emanating from the backbone structure of the cellulose polymer chains was followed under tensile deformation. It is shown that the shift rate of this band with respect to strain increases with the draw ratio of the fibers, indicative of an increase in the axial molecular alignment and subsequent deformation of the cellulose chains. A linear relationship between the Raman band shift rate and the modulus was established, indicating that the fibers possess a series aggregate structure of aligned crystalline and amorphous domains. Wide-angle X-ray diffraction data show that crystal orientation increases with an increase in the draw ratio, and a crystalline chain slip model was used to fit the change in orientation with fiber draw ratio. In addition to this a new model is proposed for a series aggregate structure that takes into better account the molecular deformation of the fibers. Using this model a prediction for the crystal modulus of a cellulose-II structure is made (83 GPa) which is shown to be in good agreement with other experimental approaches for its determination.
机译:由离子液体溶剂纺丝系统生产的一系列下一代再生纤维素纤维的分子变形和晶体取向与宏观纤维性能相关。在纺丝阶段拉伸纤维以增加分子和晶体的取向,从而获得高拉伸强度和杨氏模量,可在工程应用中潜在使用。拉曼光谱被用来量化分子应变和张力中变形的纤维的取向。 X射线衍射用于表征单纤维的晶体取向。显示这些技术可提供有关纤维微结构的补充信息。在拉伸变形下,跟随着从纤维素聚合物链的主链结构产生的,最初位于约1095厘米处的特征拉曼带的位置发生位移。结果表明,该带相对于应变的移动速率随纤维的拉伸比而增加,这表明轴向分子排列的增加和随后纤维素链的变形。建立了拉曼带移速率和模量之间的线性关系,表明纤维具有排列的结晶域和非晶域的一系列聚集结构。广角X射线衍射数据表明,随着拉伸比的增加,晶体取向增加,并且使用晶体链滑移模型来适应随着纤维拉伸比的取向变化。除此之外,针对串联聚集体结构提出了一个新模型,该模型可以更好地考虑纤维的分子变形。使用该模型可以预测纤维素II结构的晶体模量(83GPa),与确定它的其他实验方法非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号