首页> 外文OA文献 >Chip-to-chip quantum photonic interconnect by path-polarization interconversion
【2h】

Chip-to-chip quantum photonic interconnect by path-polarization interconversion

机译:通过路径极化互转换的芯片间量子光子互连

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Integrated photonics has enabled muchprogress towards quantum technologies. Many applications, e.g., quantum communication, sensing and distributed cloud quantum computing, require coherent photonic interconnection between separate on-chip subsystems. Large-scale quantum computing architectures and systems mayultimately require quantum interconnects to enable scaling beyond the limits of a single wafer and towards multi-chip systems.However, coherently connecting separate chips remains a challenge, due to the fragility of entangled quantum states. Thedistribution and manipulation of entanglement between multiple integrated devices is one of the strictest requirements of these systems. Here, we report the first quantum photonicinterconnect, demonstrating high-fidelity entanglement distribution and manipulation between two separate photonic chips, implemented using state-of-the-art silicon photonics.Path-entangled states are generated onone chip, and distributed to another chip by interconverting between path and polarization degrees of freedom via a two-dimensional grating coupler on each chip. This path-to-polarization conversion allows entangled quantum states to be coherently distributed. We use integrated state analyzers to confirm a Bell-type violation of S=2.638±0.039 between the two chips.With further improvements in loss, this quantum photonic interconnectwill providenew levels of flexibility in quantum systems andarchitectures.
机译:集成光子学已使量子技术取得了很大的进步。量子通信,传感和分布式云量子计算等许多应用都需要在单独的片上子系统之间进行相干光子互连。大规模的量子计算体系结构和系统可能最终需要量子互连来实现超越单个晶圆的限制并朝着多芯片系统扩展的规模。然而,由于纠缠的量子态的脆弱性,相干连接各个芯片仍然是一个挑战。多个集成设备之间纠缠的分布和操纵是这些系统的最严格要求之一。在这里,我们报告了第一个量子光子互连,展示了使用最先进的硅光子技术实现的两个单独的光子芯片之间的高保真度纠缠分布和操纵,路径纠缠态在一个芯片上生成,并通过通过每个芯片上的二维光栅耦合器在路径和偏振自由度之间进行互转换。这种路径极化转换允许纠缠的量子态相干分布。我们使用集成状态分析仪来确认两个芯片之间的贝尔型违反S = 2.638±0.039。随着损耗的进一步改善,这种量子光子互连将在量子系统和体系结构中提供更高的灵活性。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号