首页> 外文OA文献 >Load Balancing Hotspots in Sensor Storage Systems
【2h】

Load Balancing Hotspots in Sensor Storage Systems

机译:传感器存储系统中的负载平衡热点

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sensor networks provide us with the means of effectively monitoring and interacting with the physical world. A sensor network usually consists of a large number of small inexpensive battery-operated sensors deployed in a geographic area. This dissertation considers a sensor network deployed to monitor a disaster area. First responders continuously issue ad-hoc queries while moving in the disaster area. In such an environment, it is often more beneficial to store sensor readings and process ad-hoc queries within rather than outside the sensor network.Recently, this led to an increased popularity of Data-Centric Storage (DCS).A DCS scheme is based on a mapping function from readings to sensors based on the attribute values of each reading. This mapping function defines the DCS index structure.Two significant problems arising in this DCS network model due to data and traffic skewness are storage hotspots and query hotspots. Storage hotspots are formed when many sensor readings are mapped for storage to a relatively small number of sensor nodes. Query hotspots occur when many user queries target few sensor nodes. Both types of hotspots are hard to predict. Storage hotspots result in an uncontrolled reading shedding that decreases the Quality of Data (QoD). Due to the limited wireless bandwidth of sensors, hotspots decrease QoD by increasing collisions (thus losses) of reading/query packets. When lasting long enough, hotspots affect the Quality of Service (QoS) by unevenly depleting energy in the sensor network.This dissertation addresses both problems of hotspots through load balancing. The main dissertation hypothesis is that data migration resulting from local or global load balancing of the DCS index structure can effectively solve the hotspot problems. The contributions of this dissertation lie in developing two schemes, namely, the Zone Sharing/Zone Partitioning/Zone Partial Replication (ZS/ZP/ZPR) scheme and the K-D tree based Data-Centric Storage (KDDCS) scheme. ZS/ZP/ZPR detects and decomposes both types of hotspots through load balancing in the hotspot area. KDDCS avoids the formation of hotspots through globally load-balancing the underlying DCS index structure. Experimental evaluation shows the effectiveness of the proposed schemes in coping with hotspots in comparison to the state-of-the-art DCS schemes.
机译:传感器网络为我们提供了有效监控物理世界并与之交互的方式。传感器网络通常由部署在地理区域中的大量小型廉价电池供电的传感器组成。本文考虑了部署用于监视灾区的传感器网络。在灾区移动时,第一响应者不断发出临时查询。在这种环境下,在传感器网络内部而不是外部存储传感器读数和处理即席查询通常更有利。最近,这导致以数据为中心的存储(DCS)越来越流行。基于每个读数的属性值的从读数到传感器的映射函数。此映射功能定义了DCS索引结构。由于数据和流量偏斜而在此DCS网络模型中出现的两个重要问题是存储热点和查询热点。当将许多传感器读数映射为存储到相对少量的传感器节点时,就会形成存储热点。当许多用户查询针对少数传感器节点时,就会出现查询热点。两种类型的热点都难以预测。存储热点会导致不受控制的读取脱落,从而降低数据质量(QoD)。由于传感器的无线带宽有限,热点会通过增加读取/查询数据包的冲突(从而造成丢失)来降低QoD。热点持续时间足够长时,会通过不均匀地消耗传感器网络中的能量来影响服务质量(QoS)。本文通过负载平衡解决了热点的两个问题。本文的主要假设是,DCS索引结构的局部或全局负载均衡所导致的数据迁移可以有效地解决热点问题。本论文的贡献在于开发了两种方案,即区域共享/分区/分区部分复制(ZS / ZP / ZPR)方案和基于K-D树的数据中心存储(KDDCS)方案。 ZS / ZP / ZPR通过热点区域中的负载平衡来检测和分解这两种类型的热点。 KDDCS通过全局负载平衡底层DCS索引结构来避免形成热点。实验评估表明,与最新的DCS方案相比,该方案在应对热点方面的有效性。

著录项

  • 作者

    Aly Mohamed Abdel Mohsen;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号