首页> 外文OA文献 >Cellular and Molecular Mechanisms Underlying Vulnerability and Resilience to Noise-Induced Tinnitus.
【2h】

Cellular and Molecular Mechanisms Underlying Vulnerability and Resilience to Noise-Induced Tinnitus.

机译:潜在的易感性和抗噪声性耳鸣的细胞和分子机制。

摘要

Tinnitus, the perception of phantom sound, is often a debilitating condition that affects many millions of people. Little is known, however, about the molecule that underlies vulnerability and resilience to tinnitus. We investigated these mechanisms in the dorsal cochlear nucleus (DCN), an auditory brainstem nucleus that is essential for the induction of tinnitus. In DCN principal neurons (fusiform cells), we reveal a tinnitus-specific increase in the spontaneous firing rate (hyperactivity). We show that a reduction in Kv7.2/3 (KCNQ2/3) channel activity is essential for tinnitus induction and for the tinnitus-specific hyperactivity. This reduction is due to a shift in the voltage-dependence of KCNQ channel activation to more positive voltages. Importantly, in vivo pharmacological manipulation that shifts the voltage-dependence of KCNQ channels to more negative voltages prevents the development of tinnitus and provides an important link between the biophysical properties of the KCNQ channel and the vulnerability to tinnitus. Fusiform cells from noise-exposed mice that show resilience to tinnitus (non-tinnitus mice) display normal levels of spontaneous firing, but have more hyperpolarized subthreshold dynamics and more hyperpolarized resting membrane potential. These differences are due to a reduction in hyperpolarization-activated cyclic nucleotide-gated (HCN) channel activity. Longitudinal study reveals that 4 days after noise exposure, noise-exposed mice display non-tinnitus behavior, no fusiform cell hyperactivity, but reduced KCNQ2/3 currents. Importantly, while the preservation of reduced KCNQ2/3 currents 7 days after noise exposure gives rise to tinnitus behavior, the recovery of KCNQ2/3 currents to pre-exposed control levels is associated with non-tinnitus behavior, and is accompanied by a decrease in HCN channel activity. In vivo pharmacological opening of KCNQ2/3 channels prevented the development of tinnitus and decreased HCN currents, suggesting that KCNQ2/3 plasticity determines vulnerability and resilience to tinnitus and drives the reduction in HCN channel activity. Reduced HCN channel activity in non-tinnitus mice, by hyperpolarizing the resting membrane potential, may further prevent fusiform cell hyperactivity and contribute to tinnitus resilience. Together, our results highlight KCNQ2/3 and HCN channels as potential targets for designing therapeutics that may reduce vulnerability and promote resilience to tinnitus.
机译:耳鸣是幻象声音的感知,通常是一种令人衰弱的疾病,影响数百万人。然而,人们对耳鸣的脆弱性和恢复力的分子了解甚少。我们研究了耳蜗背侧核(DCN)中的这些机制,听觉脑干核是诱导耳鸣必不可少的。在DCN主要神经元(梭形细胞)中,我们揭示了自发放电率(活动过度)的耳鸣特异性增加。我们显示,Kv7.2 / 3(KCNQ2 / 3)通道活动的减少对于耳鸣诱导和耳鸣特异性亢进至关重要。这种降低是由于KCNQ通道激活的电压相关性转移到了更多的正电压。重要的是,体内药理学操作将KCNQ通道的电压依赖性转变为更多的负电压,可防止耳鸣的发展,并提供KCNQ通道的生物物理特性与耳鸣的脆弱性之间的重要联系。噪声暴露的小鼠对耳鸣具有抵抗力的梭形细胞(非耳鸣小鼠)显示出正常水平的自发放电,但具有更多的超极化亚阈动态和更多的超极化静息膜电位。这些差异是由于超极化激活的环状核苷酸门控(HCN)通道活性降低所致。纵向研究表明,噪声暴露后4天,噪声暴露的小鼠显示出非耳鸣行为,无梭形细胞过度活跃,但KCNQ2 / 3电流降低。重要的是,虽然噪声暴露后7天保留的减少的KCNQ2 / 3电流会引起耳鸣行为,但将KCNQ2 / 3电流恢复到预先控制的水平与非耳鸣行为有关,并且伴有耳鸣的减少。 HCN频道活动。 KCNQ2 / 3通道的体内药理学开放阻止了耳鸣的发展并降低了HCN电流,这表明KCNQ2 / 3可塑性决定了耳鸣的脆弱性和弹性,并推动了HCN通道活性的降低。通过使静止的膜电位超极化,非耳鸣小鼠中的HCN通道活性降低,可能进一步阻止梭形细胞过度活跃,并有助于耳鸣弹性。总之,我们的结果突出了KCNQ2 / 3和HCN通道作为设计可降低易损性并增强耳鸣适应性的治疗剂的潜在目标。

著录项

  • 作者

    Li Shuang;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号