首页> 外文OA文献 >Optimization of Neuromuscular Electrical Stimulation to Reduce Muscle Fatigue during Isometric Contractions
【2h】

Optimization of Neuromuscular Electrical Stimulation to Reduce Muscle Fatigue during Isometric Contractions

机译:优化神经肌肉电刺激以减少等轴测收缩期间的肌肉疲劳

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The objective of this Thesis is to show that a neuromusclar model can be used to calculate an optimized train that will impede the onset of muscle fatigue while tracking a pre-defined force reference. Implementation of a predictive force and fatigue model of a human skeletal muscle when stimulated with neuromuscular electrical stimulation (NMES) is presented herein. In this implementation, the nonlinear model is used to control muscle force to a reference. Muscle control is optimized in such a way that muscle fatigue is minimized, demonstrating potential for improvements in applications where NMES use is limited by muscle fatigue. Model parameters were identified for the able-bodied subjects and testing was performed to identify the response of the muscle to a constant frequency stimulation. An optimization algorithm was then used to compute a pulse train that will maintain an isometric contraction at a constant force for a period of time without unnecessarily fatiguing the muscle. Following each train, the fatigue of the muscle was evaluated to determine if muscle fatigue was reduced. The study has concluded that muscle fatigue was significantly reduced when an optimized train is used when compared to a constant frequency train.
机译:本论文的目的是表明,神经肌肉模型可用于计算优化的训练,该训练将在跟踪预定义的力参考值时阻止肌肉疲劳的发作。本文呈现了当用神经肌肉电刺激(NMES)刺激时人骨骼肌的预测力和疲劳模型的实现。在此实现中,非线性模型用于控制参考肌肉力量。优化肌肉控制的方式可以最大程度地减少肌肉疲劳,这表明在肌肉疲劳限制了NMES使用的应用中有改进的潜力。为健壮的受试者确定模型参数,并进行测试以鉴定肌肉对恒定频率刺激的反应。然后使用优化算法来计算脉冲序列,该脉冲序列将以恒定的力在一段时间内保持等轴测收缩,而不会不必要地疲劳肌肉。在每次训练之后,评估肌肉的疲劳以确定肌肉疲劳是否减轻。研究得出的结论是,与恒定频率的火车相比,使用优化的火车可以显着减少肌肉疲劳。

著录项

  • 作者

    Doll Brian;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号