首页> 外文OA文献 >Development and Analysis of a Hybrid Solid Oxide Fuel Cell Microturbine System
【2h】

Development and Analysis of a Hybrid Solid Oxide Fuel Cell Microturbine System

机译:混合固体氧化物燃料电池微型涡轮系统的开发与分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hybrid solid oxide fuel cell microturbine (SOFC-MT) systems present opportunities for improvement over conventional systems, including high electric efficiency, cogeneration, and the potential for low carbon emissions. Hybrid systems require stringent control, however, and competing systems (including non-hybrid SOFC systems) currently generate power reliably and efficiently. In order to advance toward commercialization, hybrid systems need to adopt a control strategy that maintains safe and efficient operation, while also exhibiting favorable exergetic and economic performance. ududThe present work investigates the SOFC stack's dynamic response to step changes in control variables, as well as the hybrid and non-hybrid systems' energetic, exergetic, economic, and environmental performances. The numerical, 1-D, SOFC stack model developed herein allows for simulations on multiple timescales. An equivalent circuit combines the fuel cell's irreversiblities with the charge double layer. The hybrid and non-hybrid models integrate the SOFC stack model with the balance-of-plant component models, evaluating the energy and exergy flows through each component. Finally, the techno-economic model calculates the hybrid and non-hybrid systems' levelized costs of electricity (LCOEs).ududManipulating the current density is found to be the most effective way to control the fuel cell stack's power, giving rise to instantaneous power changes without restricting the fuel cell stack's fuel utilization. The charge double layer negligibly influences the fuel cell stack's behavior during normal operation, even during proportional-integral control. During baseload operation, the hybrid system model exhibits an LCOE of 8.7 cents/kWh, and the non-hybrid system exhibits an LCOE of 11.9 cents/kWh. The hybrid system also operates at higher electric and exergetic efficiencies (58% (HHV) and 64%, respectively) than the non-hybrid system (44% (HHV) and 51%, respectively). The non-hybrid system cogenerates greater thermal energy than the hybrid system, however, yielding a fuel cost that is on par with that of the hybrid system. Both systems meet the EPA's proposed carbon pollution standard for new combustion turbines of 0.50 kg CO2/kWh.ududHybrid systems demonstrate the potential to save fuel and money. Continued development of these systems, particularly focused on improving the system's dynamic behavior and minimizing cost, is warranted. Investment in hybrid systems will likely become viable in the future.
机译:混合固体氧化物燃料电池微型涡轮机(SOFC-MT)系统为传统系统提供了改进的机会,包括高电效率,热电联产以及低碳排放的潜力。混合动力系统需要严格的控制,但是,竞争系统(包括非混合SOFC系统)目前可靠且高效地发电。为了朝着商业化的方向发展,混合动力系统需要采用一种控制策略,该策略在保持安全和高效运行的同时,还应具有良好的动力和经济性能。 ud ud本工作研究了SOFC堆栈对控制变量阶跃变化的动态响应,以及混合动力和非混合动力系统的能量,能量,经济和环境性能。本文开发的数字式一维SOFC堆栈模型允许在多个时标上进行仿真。等效电路将燃料电池的不可逆性与电荷双层结合在一起。混合模型和非混合模型将SOFC堆栈模型与工厂平衡组件模型集成在一起,评估通过每个组件的能量和火用流。最后,技术经济模型计算出混合动力和非混合动力系统的平均电力成本(LCOE)。 ud ud发现控制电流密度是控制燃料电池堆功率的最有效方法,因此瞬时功率变化而不会限制燃料电池堆的燃料利用率。即使在比例积分控制期间,电荷双层对燃料电池堆的行为的影响也可以忽略不计。在基本负载运行期间,混合动力系统模型的LCOE为8.7美分/千瓦时,非混合动力系统的LCOE为11.9美分/千瓦时。混合动力系统还比非混合动力系统(分别为44%(HHV)和51%)以更高的电效率和能量效率(分别为58%(HHV)和64%)运行。与混合动力系统相比,非混合动力系统产生的热能更大,但是产生的燃料成本与混合动力系统相当。两种系统均符合EPA提出的针对新型燃气轮机0.50 kg CO2 / kWh的碳污染标准。 ud ud混合动力系统显示出节省燃料和成本的潜力。这些系统的持续开发是有保证的,尤其是专注于改善系统的动态行为和最小化成本。对混合动力系统的投资将来可能会变得可行。

著录项

  • 作者

    Whiston Michael M.;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号