首页> 外文OA文献 >Fundamental Study of the Mechanical Failure of Silicon Based Electrodes for Li-Ion Batteries Using a Novel Multi-Physics Computational Modeling Framework
【2h】

Fundamental Study of the Mechanical Failure of Silicon Based Electrodes for Li-Ion Batteries Using a Novel Multi-Physics Computational Modeling Framework

机译:使用新型的多物理计算建模框架对锂离子电池硅基电极的机械故障进行基础研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Li-ion batteries are the currently accepted flagship energy storage system with several cathode systems identified over the years. However, graphite has always remained the commercial anode material of choice. Silicon has been identified as the next-generation anode for Li-ion systems with a high theoretical capacity (4200 mAhg-1) compared to graphite (372 mAhg-1) and has been the focus of much research over the past decade. Silicon unfortunately, undergoes large volumetric expansion (312%) upon Li diffusion generating considerable diffusion-induced stresses. Presence of high stress leads to mechanical failure of Si resulting in capacity fade due to loss of electrical contact with the current collector impeding commercialization. The mechanical response of the electrode depends on the electrode properties comprising the active (Si) and passive components (current collector, mechanical supports). The objective of this thesis is to gain a mechanistic understanding of the interactions between the electrode components and their effect on the overall mechanical integrity of the Si based anode assembly, which can aid in the design of failure resistant, next-generation, high capacity anodes.udTo achieve this objective, a custom nonlinear finite element modeling software that can model coupled diffusion induced large elasto-plastic deformation of Si, surface electrochemical reaction kinetics and eventual mechanical failure response of the electrode system was utilized. This modeling framework is first used to understand the effect of passive components (current collector and Si-Cu interface properties) on the mechanical stability of an a-Si thin film anode system. To unlock the mechanisms behind the gradual interfacial delamination of the Si film from the underlying Cu current collector in an a-Si thin film anode system, a detailed parametric study is performed to analyze effect of the mechanical properties of the current collector and the Si-Cu interface on the delamination at Si-Cu interface. The knowledge gained from these studies is further bolstered by examining the mechanical stability of a-Si patterned thin film anodes upon insertion of a thin elastic buffer layer between a square Si thin film pattern and the current collector. Finally, the modeling framework is utilized to understand the effect of active material geometry in Si-carbon nanotube (CNT) heterostructured anodes. ud
机译:锂离子电池是目前公认的旗舰储能系统,多年来已确定了多个阴极系统。然而,石墨一直是选择的商业阳极材料。与石墨(372 mAhg-1)相比,硅已被认为是具有高理论容量(4200 mAhg-1)的锂离子系统的下一代阳极,并且已成为过去十年中许多研究的重点。不幸的是,硅在Li扩散时会发生较大的体积膨胀(312%),从而产生相当大的扩散诱导应力。高应力的存在导致Si的机械故障,由于与集电器的电接触的损失而导致容量衰减,从而阻碍了商业化。电极的机械响应取决于包括有源(Si)和无源组件(集电器,机械支撑件)的电极属性。本论文的目的是对电极组件之间的相互作用及其对基于硅的阳极组件的整体机械完整性的影响进行机械理解,从而有助于设计耐故障的下一代高容量阳极为了达到这个目的,使用了一个定制的非线性有限元建模软件,该软件可以对耦合扩散引起的硅大弹塑性变形,表面电化学反应动力学以及电极系统最终的机械失效响应进行建模。该建模框架首先用于了解无源组件(集流体和Si-Cu界面特性)对a-Si薄膜阳极系统的机械稳定性的影响。为了解锁a-Si薄膜阳极系统中Si膜从下面的Cu集电器逐渐界面脱层的机制,我们进行了详细的参数研究,以分析集电器和Si-的机械性能的影响。 Cu界面上的分层处在Si-Cu界面处。通过研究在方形Si薄膜图案和集电器之间插入薄的弹性缓冲层后,通过检查a-Si图案化的薄膜阳极的机械稳定性,可以进一步增强从这些研究中获得的知识。最后,利用建模框架来了解活性材料几何形状对Si-碳纳米管(CNT)异质结构阳极的影响。 ud

著录项

  • 作者

    Damle Sameer;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号