首页> 外文OA文献 >Application of Bayesian Networks to Coverage Directed Test Generation for the Verification of Digital Hardware Designs
【2h】

Application of Bayesian Networks to Coverage Directed Test Generation for the Verification of Digital Hardware Designs

机译:贝叶斯网络在覆盖定向测试生成中的应用,以验证数字硬件设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Functional verification is generally regarded as the most critical phase in the successful development of digital integrated circuits. The increasing complexity and size of chip designs make it more challenging to find bugs and meet test coverage goals in time for market demands. These challenges have led to more automated methods of simulation with constrained random test generation and coverage analysis. Recent goals in industry have focused on improving the process further by applying Coverage Directed Test Generation (CDG) to automate the feedback from coverage analysis to test input generation. Previous research has presented Bayesian networks as a way to achieve CDG. Bayesian networks provide a means of capturing behaviors of a design under verification and making predictions to help guide test input generation to reach coverage goals more quickly. Previous research has shown methods for defining a Bayesian network for a design domain and generating input parameters for dynamic simulation. This thesis demonstrates that existing commercial verification tools can be combined with a Bayesian inference engine as a feasible solution for creating a fully automated CDG environment. This solution is demonstrated using methods from previous research for applying Bayesian networks to verification. The CDG framework was implemented by combining the Questa verification platform with the Bayesian inference engine SMILE (Structural Modeling, Inference, and Learning Engine) in a single simulation environment. SystemVerilog testbenches and custom software were created to automatically find coverage holes, predict test input parameters, and dynamically change these parameters to complete verification with a fewer number of test cases. The CDG framework was demonstrated by performing verification on both a combinational logic design and a sequential logic design. The results show that Bayesian networks can be successfully used to improve the efficiency and quality of the verification process.
机译:功能验证通常被认为是数字集成电路成功开发中最关键的阶段。芯片设计的复杂性和尺寸越来越大,这使得及时发现缺陷并满足市场需求的测试覆盖率目标更具挑战性。这些挑战导致了采用受限随机测试生成和覆盖率分析的更加自动化的仿真方法。工业上的最新目标已集中在通过应用覆盖率定向测试生成(CDG)来自动化覆盖率分析到测试输入生成的反馈上来进一步改进流程。先前的研究提出了贝叶斯网络作为实现CDG的一种方法。贝叶斯网络提供了一种手段,可以捕获经过验证的设计行为并进行预测,以帮助指导测试输入的生成,从而更快地达到覆盖率目标。先前的研究表明了为设计域定义贝叶斯网络并为动态仿真生成输入参数的方法。本文证明了现有的商业验证工具可以与贝叶斯推理引擎结合使用,作为创建全自动CDG环境的可行解决方案。使用先前研究中用于将贝叶斯网络应用于验证的方法证明了该解决方案。 CDG框架是通过将Questa验证平台与贝叶斯推理引擎SMILE(结构模型,推理和学习引擎)结合在一起而实现的。创建了SystemVerilog测试平台和自定义软件,以自动发现覆盖漏洞,预测测试输入参数并动态更改这些参数,从而以较少的测试用例完成验证。通过对组合逻辑设计和顺序逻辑设计都执行验证来演示CDG框架。结果表明,贝叶斯网络可以成功地用于提高验证过程的效率和质量。

著录项

  • 作者

    Vance Jeffery S;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号