首页> 外文OA文献 >Closing the loop: A combined computational modeling and experimental approach provides novel insights into immune cell signaling systems and their global effects.
【2h】

Closing the loop: A combined computational modeling and experimental approach provides novel insights into immune cell signaling systems and their global effects.

机译:闭环:组合的计算建模和实验方法为免疫细胞信号系统及其整体效应提供了新颖的见解。

摘要

Systems biology is an approach that marries complimentary disciplines, encouraging the use of quantitative methods to help define, explain, and predict biological processes. By building computational models of biological systems, we can pose new biologically motivated questions and make falsifiable, quantitative predictions. In this thesis I will discuss the cycle of model building and experimental validation, and how it has provided insight into poorly and understood systems and allowed us to predict the effects of perturbations on these systems, which could have real and significant effects in human health and medicine. First, we model the activation of neutrophils in sepsis. By fitting a single model to two sets of data, coming from animals that survive and succumb to the same bacterial challenge, we create a realistic representation of biological variation, showing how a single network architecture can lead to different outcomes. Additionally, this method allows us to identify markers for sepsis susceptibility and identify and optimize a potential treatment option to lead to improved outcomes. Next, we model signaling downstream of the T cell receptor, and how this leads to differentiation decision making in CD4 T cells. By modeling the dynamics of this signaling network under varying antigen doses, we are able to identify network elements critical to dose discrimination, leading to the production of Treg cells following low dose stimulation and Th cells following high dose stimulation. We can then perturb these elements of the network, to potentially fine tune mature T cell populations to alter the trajectories of autoimmune disorders or cancer. Finally, we model the dynamics of IL-17 signaling. This allows us to understand how ubiquitin scaffolds form following cytokine stimulation, leading to the activation of NF-B, and how the ubiquitin editing enzyme A20 acts as a negative feedback regulator by breaking these chains. This allows us to better understand ubiquitin oligomerization as a fulcrum in the system, and how changes in A20 and ubiquitin binding proteins lead to different profiles of NF-B activation and could play a role in inflammatory disorders.
机译:系统生物学是一种将互补学科结合起来的方法,鼓励使用定量方法来帮助定义,解释和预测生物学过程。通过建立生物系统的计算模型,我们可以提出新的具有生物学动机的问题,并做出可伪​​造的定量预测。在本文中,我将讨论模型构建和实验验证的周期,以及它如何提供对较差和理解的系统的洞察力,以及如何使我们预测扰动对这些系统的影响,这些扰动可能对人类健康和健康产生重大影响。药物。首先,我们对败血症中嗜中性粒细胞的激活进行建模。通过将单个模型拟合到两组数据,这些数据来自存活并屈服于相同细菌挑战的动物,我们创建了生物学变异的真实表示,展示了单个网络体系结构如何导致不同的结果。此外,这种方法使我们能够鉴定败血症易感性的标志物,并鉴定和优化潜在的治疗方案以改善结果。接下来,我们对T细胞受体下游的信号传导进行建模,以及这如何导致CD4 T细胞的分化决策。通过在不同的抗原剂量下对该信号网络的动力学建模,我们能够确定对剂量区分至关重要的网络元素,从而导致低剂量刺激后产生Treg细胞,高剂量刺激后产生Th细胞。然后,我们可以干扰网络的这些元素,以潜在地微调成熟的T细胞群体,以改变自身免疫性疾病或癌症的发展轨迹。最后,我们对IL-17信号传导的动力学建模。这使我们能够了解细胞因子刺激后泛素支架的形成方式,从而导致NF-κB的活化,以及泛素编辑酶A20如何通过破坏这些链来充当负反馈调节剂。这使我们可以更好地理解泛素寡聚化作为系统的支点,以及A20和泛素结合蛋白的变化如何导致NF-B活化的不同情况,并可能在炎性疾病中起作用。

著录项

  • 作者

    Sheehan Robert;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号