首页> 外文期刊>Biomechanics and modeling in mechanobiology >A combined experimental atomic force microscopy-based nanoindentation and computational modeling approach to unravel the key contributors to the time-dependent mechanical behavior of single cells
【24h】

A combined experimental atomic force microscopy-based nanoindentation and computational modeling approach to unravel the key contributors to the time-dependent mechanical behavior of single cells

机译:基于组合的实验原子力显微镜的纳米凸缘和计算建模方法,以解开单细胞的时间依赖性机械行为的关键贡献者

获取原文
获取原文并翻译 | 示例
       

摘要

Cellular responses to mechanical stimuli are influenced by the mechanical properties of cells and the surrounding tissue matrix. Cells exhibit viscoelastic behavior in response to an applied stress. This has been attributed to fluid flow-dependent and flow-independent mechanisms. However, the particular mechanism that controls the local time-dependent behavior of cells is unknown. Here, a combined approach of experimental AFM nanoindentation with computational modeling is proposed, taking into account complex material behavior. Three constitutive models (porohyperelastic, viscohyperelastic, poroviscohyperelastic) in tandem with optimization algorithms were employed to capture the experimental stress relaxation data of chondrocytes at 5 % strain. The poroviscohyperelastic models with and without fluid flow allowed through the cell membrane provided excellent description of the experimental time-dependent cell responses (normalized mean squared error (NMSE) of 0.003 between the model and experiments). The viscohyperelastic model without fluid could not follow the entire experimental data that well (NMSE = 0.005), while the porohyperelastic model could not capture it at all (NMSE = 0.383). We also show by parametric analysis that the fluid flow has a small, but essential effect on the loading phase and short-term cell relaxation response, while the solid viscoelasticity controls the longer-term responses. We suggest that the local time-dependent cell mechanical response is determined by the combined effects of intrinsic viscoelasticity of the cytoskeleton and fluid flow redistribution in the cells, although the contribution of fluid flow is smaller when using a nanosized probe and moderate indentation rate. The present approach provides new insights into viscoelastic responses of chondrocytes, important for further understanding cell mechanobiological mechanisms in health and disease.
机译:对机械刺激的细胞反应受细胞和周围组织基质的力学性质的影响。细胞响应于施加的应力表现出粘弹性行为。这归因于流体流动依赖性和无关的机制。然而,控制细胞的局部时间依赖行为的特定机制是未知的。这里,提出了一种具有计算建模的实验AFM纳米indentation的组合方法,考虑到复杂的材料行为。使用优化算法的三个本构模型(Poro Hegerelastic,ViscopereCallastic,PoroviscohomperceLastic)捕获5%菌株的软骨细胞的实验应力松弛数据。具有且不流体流动的poroviscohyperceLastic模型通过细胞膜提供了实验时间依赖性细胞应答的优异描述(模型和实验之间的0.003的归一性平均平方误差(NMSE))。没有流体的ViscoHyperceLastic型号无法遵循整个实验数据(NMSE = 0.005),而PoroPereLoSelastic模型根本不能捕获(NMSE = 0.383)。我们还通过参数分析表明,流体流动对加载相和短期细胞弛豫响应具有小,但基本的作用,而固体粘弹性控制长期反应。我们建议局部时间依赖性细胞机械响应由细胞内骨架和流体流量再分布的内在粘弹性的组合效果决定,尽管在使用纳米尺寸探针和中度压痕速率时流体流动的贡献更小。本方法为软骨细胞的粘弹性反应提供了新的洞察力,对于进一步了解健康和疾病的细胞机动机制来说很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号