首页> 外文OA文献 >Numerical analysis and phenomenology of homogeneous, isotropic turbulence generated by higher order models of turbulence
【2h】

Numerical analysis and phenomenology of homogeneous, isotropic turbulence generated by higher order models of turbulence

机译:由高阶湍流模型产生的均质,各向同性湍流的数值分析和现象学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Turbulence appears in many processes in the nature and it is connected with many engineering, biophysical and climate applications. Therefore, the accurate, efficient and reliable simulation of turbulent flows is an essential difficulty in many current applications. Fundamental and universal (i.e. mathematical) insights into fluid structures will enable such simulations. To that end, we apply the phenomenology of homogeneous, isotropic turbulence to a family of Large Eddy Simulation (LES) models, the so-calledfamily of Approximate Deconvolution Models (ADM). We establish that the models themselves have an energy cascade with two asymptotically different inertial ranges. Delineation of these gives insight into the resolution requirements of using ADM. A correct prediction of a 3D turbulent flow means getting the energy balance and rotational structures correct, i.e., it means (in the large) matching the energy and helicity statistics. Thus, we consider the prediction of energy and helicity statistics of the family of Approximate Deconvolution Models of turbulence. We show that the family of ADM has a helicity cascade that it is linked to its energy cascade and predicted correctly over the large/resolved scales. Turbulent flows are very rich in scales and to be able to capture all of them, we need to use a very fine mesh. Unfortunately, even with the amazing development of the computer power, we are not able to perform such simulations. Thus, many numerical regularization (aiming to truncate the small scales) have been explored in computational fluid dynamics. We investigated one of such regularization, called the Time Relaxation Model (TRM). We apply the phenomenology of homogeneous, isotropic turbulence to understand how the time relaxation term, by itself, acts to truncate solution scales and to use this understanding to give insight into coefficient selection. We also study the stability and convergence analysis of a finite element discretization of TRM. Next we complement this with an experimentalstudy of the convergence rates and of the effect the time relaxation term has on the large scales of a flow near a transitional point.
机译:湍流出现在自然界的许多过程中,并且与许多工程,生物物理和气候应用相关。因此,在许多当前的应用中,精确,有效和可靠地模拟湍流是一个基本困难。对流体结构的基础和普遍(即数学)洞察力将使这种模拟成为可能。为此,我们将均质,各向同性湍流的现象学应用于大型涡流模拟(LES)模型系列,即所谓的近似反卷积模型(ADM)系列。我们建立了模型本身具有两个渐近不同惯性范围的能量级联。对它们的描述使您可以深入了解使用ADM的分辨率要求。对3D湍流的正确预测意味着使能量平衡和旋转结构正确,即,意味着(大体上)匹配能量和螺旋度统计信息。因此,我们考虑了湍流近似反卷积模型族的能量和螺旋度统计的预测。我们表明,ADM家族具有螺旋级联,该螺旋级联与其能量级联相关联,并且在大/分辨的尺度上正确预测。湍流的尺度非常丰富,为了能够捕获所有尺度,我们需要使用非常精细的网格。不幸的是,即使计算机功能得到了惊人的发展,我们也无法执行这样的模拟。因此,在计算流体动力学中已经探索了许多数值正则化(旨在截断小尺度)。我们研究了这种正则化方法之一,称为时间松弛模型(TRM)。我们应用均质,各向同性湍流的现象学,以了解时间松弛项本身是如何截断解尺度的,并利用这种理解来深入了解系数选择。我们还研究了TRM有限元离散化的稳定性和收敛性分析。接下来,我们用收敛速度的实验研究和时间松弛项对过渡点附近的大尺度流动的影响进行实验研究来补充。

著录项

  • 作者

    Neda Monika;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号