首页> 外文OA文献 >Automated Method for N-Dimensional Shape Detection Based on Medial Image Features
【2h】

Automated Method for N-Dimensional Shape Detection Based on Medial Image Features

机译:基于中间图像特征的N维形状自动检测方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The focus of my thesis is to build upon the method of Shells and Spheres developed in our laboratory. The method as previously implemented extracts medial points based on the divergence of the direction function to the nearest boundary as it changes across medial ridges, and reports the angle between the directions from the medial point to two respective boundary points. The direction function is determined by analyzing the mean and variance of intensity within pairs of adjacent spherical (circular in 2D) regions in the image. My thesis research has involved improving the search method for determining the distance function and identifying medial points, and then clustering those medial points to extract features including scale, orientation and medial dimensionality. These are then analyzed to detect local geometric shapes. I have implemented the methods in N dimensions in the Insight Toolkit (ITK). In 3D, the method yields three fundamental dimensionalities of local shape: the sphere, the cylinder, and the slab, which, along with scale, are invariant to translation and rotation. Tests are performed on simple geometric objects including the hollow sphere (slab), torus (cylinder) and sphere. The results confirm the capability of the system to successfully identify the described medial shape features, and lay the foundation for ongoing research in identifying more complex anatomical objects in medical images.
机译:本文的重点是建立在我们实验室开发的“壳和球”方法上。如先前实现的方法,当方向函数在中间脊上变化时,基于方向函数到最近边界的散度来提取中间点,并报告从中间点到两个相应边界点的方向之间的角度。通过分析图像中成对的相邻球形(2D圆形)区域内的强度平均值和方差来确定方向函数。我的论文研究涉及改进用于确定距离函数和识别中间点的搜索方法,然后将这些中间点聚类以提取包括比例,方向和中间尺寸的特征。然后分析这些以检测局部几何形状。我已经在Insight工具包(ITK)的N维中实现了这些方法。在3D中,该方法产生三个局部形状的基本尺寸:球体,圆柱体和平板,它们随比例缩放而对平移和旋转不变。对简单的几何对象(包括空心球(平板),圆环(圆柱)和球)进行测试。结果证实了该系统能够成功识别所描述的内侧形状特征的能力,并为在医学图像中识别更复杂的解剖对象方面的正在进行的研究奠定了基础。

著录项

  • 作者

    Revanna Shivaprabhu Vikas;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号