首页> 外文OA文献 >Generating Electricity within the Physiological Environment for Low Power Implantable Medical Device Applications: Towards the development of in-vivo biofuel cell technologies
【2h】

Generating Electricity within the Physiological Environment for Low Power Implantable Medical Device Applications: Towards the development of in-vivo biofuel cell technologies

机译:在低功率可植入医疗设备应用的生理环境中发电:朝着体内生物燃料电池技术的发展

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electrochemical studies were performed to explore electron transfer (ET) between human white blood cells (WBC) and carbon fiber electrodes (CFE). Currently, an active area of research involves encouraging ET between microbes and various electrodes in a biofuel cell (BFC). ET between microbes and electrodes are thought to occur i) directly through plasma membrane-bound electron transport chain proteins; and/or ii) indirectly through the release of metabolic products or biomolecules near the electrode surface. An important motivation of this research is the need for alternative long lasting power sources for implantable diagnostic and therapeutic devices. A particular interest is reducing the size and weight of implantable devices. Currently employed internal batteries largely contribute to both. BFCs are promising prospects as they couple the oxidation of a biofuel (such as glucose) to the reduction of molecular oxygen to water. Both glucose and oxygen are abundantly present within our body's cells and tissues. The goal of this project is to explore the feasibility of utilizing WBCs (a human cell model) to generate electricity by fostering direct or indirect ET between these cells - or more specifically, between the metabolic processes of these cells - and the anode of a BFC. ET from the metabolic processes of whole cells to electrodes had, to the best of our knowledge, only previously been demonstrated for microbes. The electrochemical activities of WBCs isolated from whole human blood by red blood cell (RBC) lysis, peripheral blood mononuclear cells (PBMCs) isolated on a Ficoll-Paque gradient, as well as cells from a BLCL cell line and two leukemia cell lines (K562 and Jurkat) were all investigated by incorporation of the cells into the anode compartment of a proton exchange membrane fuel cell (PEMFC). Cyclic voltammetry was employed as an electrochemical technique to investigate the ET ability of the cells, as it can reveal both thermodynamic and kinetic information regarding oxidation-reduction processes at the CFE surface. The results of our studies demonstrate that upon activation, biochemical species, such as serotonin, are released by PBMCs, which may become irreversibly oxidized at the electrode surface.
机译:进行了电化学研究,以探索人类白细胞(WBC)和碳纤维电极(CFE)之间的电子转移(ET)。当前,研究的活跃领域涉及鼓励微生物与生物燃料电池(BFC)中的各种电极之间的ET。微生物与电极之间的ET被认为是:i)直接通过质膜结合的电子传输链蛋白发生;和/或ii)通过在电极表面附近释放代谢产物或生物分子间接进行。这项研究的重要动机是需要用于植入式诊断和治疗设备的替代持久电源。特别令人关注的是减小可植入装置的尺寸和重量。当前使用的内部电池对两者都有很大贡献。 BFC具有广阔的前景,因为它们将生物燃料(例如葡萄糖)的氧化与分子氧还原为水结合在一起。葡萄糖和氧气都大量存在于人体的细胞和组织中。该项目的目的是探索通过利用WBC(人类细胞模型)通过在这些细胞之间(或更具体地说,在这些细胞的代谢过程之间)与BFC阳极之间培养直接或间接ET来发电的可行性。 。据我们所知,从整个细胞的代谢过程到电极的ET仅在微生物中得到证实。通过红细胞(RBC)裂解从全血中分离的WBC,在Ficoll-Paque梯度上分离的外周血单核细胞(PBMC)以及BLCL细胞系和两种白血病细胞系(K562)的电化学活性和Jurkat)都通过将电池合并到质子交换膜燃料电池(PEMFC)的阳极室中进行研究。循环伏安法被用作一种电化学技术来研究细胞的ET能力,因为它可以揭示有关CFE表面氧化还原过程的热力学和动力学信息。我们的研究结果表明,激活后,PBMC释放出诸如5-羟色胺等生化物质,这些物质可能在电极表面不可逆地被氧化。

著录项

  • 作者

    Justin Gusphyl Antonio;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号