首页> 外文OA文献 >AUTOMATED FEATURE EXTRACTION AND CONTENT-BASED RETRIEVAL OFPATHOLOGY MICROSCOPIC IMAGES USING K-MEANS CLUSTERING AND CODE RUN-LENGTH PROBABILITY DISTRIBUTION
【2h】

AUTOMATED FEATURE EXTRACTION AND CONTENT-BASED RETRIEVAL OFPATHOLOGY MICROSCOPIC IMAGES USING K-MEANS CLUSTERING AND CODE RUN-LENGTH PROBABILITY DISTRIBUTION

机译:使用K均值聚类和代码运行时概率分布的自动特征提取和基于内容的病理学显微图像检索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The dissertation starts with an extensive literature survey on the current issues in content-based image retrieval (CBIR) research, the state-of-the-art theories, methodologies, and implementations, covering topics such as general information retrieval theories, imaging, image feature identification and extraction, feature indexing and multimedia database search, user-system interaction, relevance feedback, and performance evaluation. A general CBIR framework has been proposed with three layers: image document space, feature space, and concept space. The framework emphasizes that while the projection from the image document space to the feature space is algorithmic and unrestricted, the connection between the feature space and the concept space is based on statistics instead of semantics. The scheme favors image features that do not rely on excessive assumptions about image contentAs an attempt to design a new CBIR methodology following the above framework, k-means clustering color quantization is applied to pathology microscopic images, followed by code run-length probability distribution feature extraction. Kulback-Liebler divergence is used as distance measure for feature comparison. For content-based retrieval, the distance between two images is defined as a function of all individual features. The process is highly automated and the system is capable of working effectively across different tissues without human interference. Possible improvements and future directions have been discussed.
机译:论文从广泛的文献调查开始,内容涉及基于内容的图像检索(CBIR)研究中的当前问题,最新的理论,方法和实现,涵盖了诸如通用信息检索理论,成像,图像等主题。特征识别和提取,特征索引和多媒体数据库搜索,用户系统交互,相关性反馈以及性能评估。已经提出了具有三层的通用CBIR框架:图像文档空间,特征空间和概念空间。该框架强调,虽然从图像文档空间到特征空间的投影是算法性的,并且不受限制,但是特征空间和概念空间之间的联系是基于统计信息而不是语义。该方案支持不依赖于图像内容过多假设的图像特征为了尝试按照上述框架设计新的CBIR方法,将k均值聚类颜色量化应用于病理学显微图像,然后是代码游程长度概率分布特征萃取。 Kulback-Liebler散度用作特征比较的距离度量。对于基于内容的检索,将两个图像之间的距离定义为所有单个特征的函数。该过程是高度自动化的,并且该系统能够跨不同组织有效地工作,而无需人工干预。讨论了可能的改进和未来的方向。

著录项

  • 作者

    Zheng Lei;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号