首页> 外文OA文献 >Channel Characterization and Object Classification in Non-Stationary and Uncertain Environments
【2h】

Channel Characterization and Object Classification in Non-Stationary and Uncertain Environments

机译:非平稳和不确定环境中的通道表征和对象分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Classification of SONAR targets in underwater environments has long been a challenging problem. These are mainly due to the presence of undesirable effects like dispersion, attenuation and self-noise. Furthermore, we also have to contend with range dependent environments, like the continental shelf/littoral regions, where most of the human and aquatic life's activities occur. ududOur work consists of analyzing the propagation in these environments from a pulse-evolution perspective. We look at cases where characterizing wave propagation using conventional Fourier-spectral analysis is infeasible for practical applications and instead resort to a phase-space approximation for it. We derive the phase-space approximations for a variety of propagating waves and limiting boundary conditions.ududWe continue our past work on invariant features to enhance classification performance; we simulate the derived features for waves with cylindrical spreading. Another area of our work includes looking at the equation governing the wave propagation from a phase space perspective. It has been shown before that reformulating the classical wave equation in the phase-space provides interesting insights to the solution of the equation. It has been posited that this would be especially useful for non-stationary functions, like the ones governing SONAR propagation underwater.ududWe perform classification of real world SONAR data measured by the JRP ( DRDC-Atlantic, NURC, ARL-PSU, NRL) program. We use a 'classic' MPE classifier on the given non-stationary and contrast its performance with an MPE classifier augmented by a Linear Time Varying (LTV) filter, to assess the impact of adding a time-varying pre-filter to a classifier (MPE) deemed optimal for stationary additive white Gaussian noise. We show that the addition of the time-varying pre-filter to augment the standard MPE classifier does increase the performance of the classifier.ududFinally, we look at the self-noise problem that is commonly present in the littoral regions of the ocean, which also happens to be the region where most of shallow water sound propagation occurs. We look at phase-space approach to the stochastic models that simulate the effect of signal dependent noise reverberations and attempt to design time-varying estimators that would mitigate the problem at hand. We perform simulations that corroborate our premise. Further directions in the aforementioned areas are also presented.
机译:水下环境中SONAR目标的分类长期以来一直是一个具有挑战性的问题。这些主要是由于存在不希望有的影响,例如色散,衰减和自噪声。此外,我们还必须应对范围依赖的环境,例如大陆架/沿海地区,人类和水生生物的大部分活动都在其中发生。 ud ud我们的工作包括从脉冲演化的角度分析这些环境中的传播。我们研究了在实际应用中使用常规傅里叶光谱分析表征波传播是不可行的情况,而是诉诸于相空间近似。我们推导了各种传播波和极限边界条件的相空间近似。 ud ud我们将继续进行不变特征的以往工作,以提高分类性能。我们模拟了圆柱扩展波的导出特征。我们工作的另一个领域包括从相空间的角度研究控制波传播的方程。之前已经证明,在相空间中重新构造经典波动方程式可以为方程式的求解提供有趣的见解。假设这对于非平稳功能特别有用,例如用于控制SONAR在水下传播的功能。 ud ud我们对由JRP(DRDC-Atlantic,NURC,ARL-PSU, NRL)程序。我们在给定的非平稳状态上使用“经典” MPE分类器,并将其性能与通过线性时变(LTV)滤波器增强的MPE分类器进行对比,以评估向分类器添加时变预滤波器的影响( MPE)被认为是最佳的平稳加性高斯白噪声。我们展示了添加时变预滤波器以增强标准MPE分类器的确会提高分类器的性能。 ud ud最后,我们看一看常见的自噪声问题。海洋,也恰好是大部分浅水声音传播发生的区域。我们将目光放在随机模型的相空间方法上,该方法可模拟与信号相关的噪声混响的效果,并尝试设计时变估计量以减轻当前的问题。我们进行的模拟证实了我们的前提。还介绍了上述区域中的其他方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号