首页> 外文OA文献 >Etude des interactions protéine-protéine et protéine-ligand par bio- et chimie-informatique structurale : Identification de petites molécules bio-actives
【2h】

Etude des interactions protéine-protéine et protéine-ligand par bio- et chimie-informatique structurale : Identification de petites molécules bio-actives

机译:通过生物和结构化学计算机科学对蛋白质-蛋白质和蛋白质-配体之间的相互作用进行研究:鉴定小的生物活性分子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this document, I describe my contribution into 2 complementary aspects of structural bioinformatic : the modelling of the 3D structure of proteins and the modelling of their modulators. The identification and the structural analysis of protein binding sites (by proteins or small molecules) allow the modulation of their biological function by using new synthetic entities. The last may act as useful tools for further in vivo and in vitro physiopathologic studies. Such interactions can be predicted by docking programs. First, I developed an integrated system for the modelling of the 3D structure of proteins by using homology modelling. The server @TOME ((@utomatic Threading Optimisation Modelling & Evaluation) was the first, in France, that allows the whole automatic modelling of protein structures by performing the 4 usual steps: fold recognition, alignment, model building and model evaluation (http://bioserver.cbs.cnrs.fr). @TOME was evaluated during the CASP5 session in 2002 (http://predictioncenter.llnl.gov/). Results indicate that our server performed well over the 67 targets. @TOME was ranked 26th of the 187 registered groups. More importantly, results validated the use of the fully automatic mode of @TOME on cases where the sequence identity between the target and the template structure is more than 30%. During a sabbatical stay at the University of Stony Brook, NY, USA at Ilya Vakser's lab, I developed a database of annotated protein-protein co-crystallized structures. This bound-bound database provides the foundation of a more ambitious system of databases called DOCKGROUND. It is designed to become a comprehensive public environment for developing and validating new methodologies for modelling of protein interactions. Concerning the bound-bound part, programs filter and annotate structures coming from the Biological Unit database. Our data has several options to exclude particular complexes as well as redundancies based on sequence or structural similarities. The database is accessible by the web (http://dockground.bioinformatics.ku.edu) and is regularly updated. Thanks to a NIH grant, the DOCKGROUND project is under expansion with the release of 3 new databases. De novo drug design and virtual screenings constitute a major part of my researches. More particularly, I develop a de novo drug design program called LEA3D. LEA3D is able to optimally combine fragments to generate ideal putative ligands. These methods have been applied successfully to the Thymidine Monophosphate Kinase (TMPK) of Mycobacterium tuberculosis. In collaboration with chemists and biochemists of Pasteur Institute, new structural families of inhibitors have been identified comprising one synthetic inhibitor with a 3-fold better affinity than the substrate dTMP. A new hit ‘hunting' strategy based on fragment screenings is also described. It combines cheminformatic, NMR and crystallography experimental methods. This strategy aims to identify low molecular weight compounds that are optimized into more elaborated and potent binders.
机译:在本文中,我描述了我对结构生物信息学的两个互补方面的贡献:蛋白质3D结构的建模及其调节剂的建模。蛋白质结合位点的鉴定和结构分析(通过蛋白质或小分子)可以通过使用新的合成实体来调节其生物学功能。最后一个可以用作进一步体内和体外生理病理学研究的有用工具。可以通过对接程序预测此类交互。首先,我开发了一个用于使用同源性建模对蛋白质3D结构进行建模的集成系统。服务器@TOME((@utomatic Threading Optimization Modeling&Evaluation)是法国的第一台服务器,它通过执行四个常规步骤来实现蛋白质结构的全自动建模:折叠识别,比对,模型构建和模型评估(http: // Tome在2002年的CASP5会议上进行了评估(http://predictioncenter.llnl.gov/),结果表明我们的服务器在67个目标上表现良好。 187个注册组中的第26个。更重要的是,结果验证了@TOME的全自动模式在靶标和模板结构之间的序列同一性超过30%的情况下的使用。我在Ilya Vakser实验室的美国纽约布鲁克开发了带注释的蛋白质-蛋白质共结晶结构的数据库,该绑定数据库为更雄心勃勃的DOCKGROUND数据库系统奠定了基础,旨在使其成为一个复杂的数据库。丰富的公共环境,用于开发和验证用于建模蛋白质相互作用的新方法。关于装订部分,程序对来自生物单位数据库的结构进行过滤和注释。我们的数据有几种选择,可以排除特定的复合物以及基于序列或结构相似性的冗余。该数据库可通过Web(http://dockground.bioinformatics.ku.edu)访问,并定期更新。多亏了美国国立卫生研究院(NIH)的资助,DOCKGROUND项目正随着3个新数据库的发布而扩展。从头进行药物设计和虚拟筛选是我研究的主要部分。更具体地说,我开发了一个称为LEA3D的从头药物设计程序。 LEA3D能够最佳地组合片段以生成理想的假定配体。这些方法已成功应用于结核分枝杆菌的胸苷单磷酸激酶(TMPK)。与巴斯德研究所的化学家和生物化学家合作,已经确定了新的抑制剂结构家族,其中包括一种合成抑制剂,其亲和力比底物dTMP好3倍。还描述了一种基于片段筛选的新热门“狩猎”策略。它结合了化学信息学,NMR和晶体学实验方法。该策略旨在确定低分子量化合物,这些化合物已被优化为更精细和更有效的粘合剂。

著录项

  • 作者

    Douguet Dominique;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号