首页> 外文OA文献 >A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon.
【2h】

A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon.

机译:巴西亚马逊河植被分类的Landat TM和SPOT HRG影像的比较研究。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Complex forest structure and abundant tree species in the moist tropical regions often couse difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HBG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG of TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels X 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin.
机译:在潮湿的热带地区,复杂的森林结构和丰富的树种常常导致难以用遥感数据对植被类别进行分类。本文通过对Landsat Thematic Mapper(TM)和SPOT高分辨率几何(HRG)仪器数据的整合,以及光谱特征和纹理的结合,通过对不同图像组合的比较研究,探索了植被分类精度的改进。使用最大似然分类器将不同的图像组合分类为专题图。这项研究表明,基于HBG多光谱和全色数据的数据融合稍微改善了植被分类的准确性:与基于TM多光谱图像原始HRG的分类结果相比,kappa系数提高了3.1%至4.6%。与纯HRG多光谱图像相比,HRG光谱签名和两个纹理图像的组合将kappa系数提高了6.3%。窗口大小为9像素X 9像素的基于熵或第二时刻纹理量度的纹理图像在提高植被分类准确性方面发挥了重要作用。总体而言,光学遥感数据仍不足以对亚马逊河流域的植被进行准确分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号