首页> 外文OA文献 >Multi-camera intelligent space for a robust, fast and easy deployment of proactive robots in complex and dynamic environments
【2h】

Multi-camera intelligent space for a robust, fast and easy deployment of proactive robots in complex and dynamic environments

机译:多摄像机智能空间,可在复杂和动态环境中可靠,快速,轻松地部署主动型机器人

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the current challenges in robotics is the integration of robots in everyday environments. However,it is difficult to achieve this with stand-alone robots that use only the information provided by their ownsensors (on-board sensors). In this thesis, we will explore the use of intelligent spaces (i.e. spaces wheremany sensors and intelligent devices are distributed and which provide information to the robot), to getrobots operating in complex environments in a short period of time. Our proposal is to build an intelligentspace that allows an easy, fast, and robust deployment of robots in different environments. This solutionmust allow robots to move and operate efficiently in unknown environments, and it must be scalable tothe number of robots and other elements.Our intelligent space will consist of a distributed network of intelligent cameras and autonomous robots.The cameras will detect situations that might require the presence of the robots, inform them about thesesituations, and also support their movement in the environment. The robots, on the other hand, willnavigate safely within this space towards the areas where these situations happen. With this proposal, ourrobots are not only able to react to events that occur in their surroundings, but to events that occuranywhere. As a consequence, the robots can react to the needs of the users regardless of where the usersare. This will look as if our robots are more intelligent, useful, and have more initiative. In addition, thenetwork of cameras will support the robots on their tasks, and enrich their environment models. This willresult on a faster, easier and more robust robot deployment and operation.In this thesis, we will explore two alternatives, regarding how the intelligence is distributed among theagents: collective intelligence and centralised intelligence. Under the collective intelligence paradigm,intelligence is fairly distributed among robots and cameras. Global intelligence arises from the interactionamong individual agents, and there is not a central agent that handles most decision making. This issomehow similar to self-organization processes that are usually observed in nature, where there is nohierarchy nor centralisation. In this case, we assume that it is possible to get robots operating in a prioriunknown environments when their behaviour emerges from the interaction amongst an ensemble ofindependent agents (cameras), that any user can place in different locations of the environment. Theseagents, initially identical, will be able to observe human and robot behaviour, learn in parallel, adapt andspecialize in the control of the robots. To this extent, our cameras will be able to detect and track robotsand humans robustly, to discover their camera neighbours, and to guide the robot navigation throughroutes of these cameras. Meanwhile, the robots must only follow the instructions of the cameras andnegotiate obstacles in order to avoid collisions.On the other hand, under the centralised intelligence paradigm, one type of agent will be assigned muchmore intelligence than the rest. Therefore, this agent will make most decision making and coordination,and its performance will have a higher importance than that of other agents. To explore this paradigm, inthis thesis, the role of central agent will be played by the robot agent, and most of this intelligence will bedevoted to the task of self-localisation and navigation. In this regard, we have performed an experimentalstudy about the strengths and weaknesses of different information sources to be used for the task ofrobot localisation. The study has shown that no source performs well in every situation, but thecombination of complementary sensors may lead to more robust localisation algorithms. Therefore, wehave developed a robot localisation algorithm that combines the information from multiple sensors. Thisalgorithm is able to provide robust and precise localisation estimates even in situations where singlesensorlocalization techniques usually fail. It can fuse the information of an arbitrary number of sensors,even if they are not synchronised, work at different data rates, or if some of them stop working. We havetested our algorithm with the following sensors: a 2D laser range finder, a magnetic compass, a WiFireception card, a radio reception card (433 MHz band), the network of external cameras, and a cameramounted in the robot. We have also designed wireless transmitters (motes) and we have studied theperformance of our positioning algorithm when they are able to vary their transmission power. Throughan experimental study, we have demonstrated that this ability tends to improve the performance of awireless positioning system. This opens the door for future improvements in the line of active localisation.Under this paradigm, the robot would be able to modify the transmission power of the transmitters inorder to discard localisation hypotheses proactively.Our proposal is a generic solution that can be applied to many different service robot applications. As anspecific example of application, we have integrated our intelligent space with a general purpose guiderobot that we have developed in the past. This robot is aimed to operate in different social environments,such as museums, conferences, or robotics demonstrations in research centres. Our robot is able todetect and track people around him, follow an instructor around the environment, learn routes of interestfrom the instructor, and reproduce them for the visitors of the event. Moreover, the robot is able tointeract with humans using gesture recognition techniques and an augmented reality interface.
机译:机器人技术中当前的挑战之一是在日常环境中集成机器人。但是,仅使用仅由其自己的传感器(板载传感器)提供的信息的独立机器人很难实现这一目标。在本文中,我们将探索智能空间(即分布有多个传感器和智能设备并向机器人提供信息的空间)在短时间内在复杂环境中运行的机器人的用途。我们的建议是建立一个智能空间,以允许在不同环境中轻松,快速且强大地部署机器人。该解决方案必须允许机器人在未知环境中有效移动和操作,并且必须可扩展至机器人和其他元素的数量。我们的智能空间将由智能摄像机和自主机器人的分布式网络组成,摄像机将检测可能需要的情况机器人的存在,告知他们这些情况,并支持它们在环境中的移动。另一方面,机器人将在该空间内安全导航到发生这些情况的区域。有了这个建议,我们的机器人不仅能够对周围环境中发生的事件做出反应,而且还能对任何地方发生的事件做出反应。结果,无论用户身在何处,机器人都可以对用户的需求做出反应。看起来我们的机器人更智能,有用,更有主动性。另外,摄像机网络将支持机器人执行任务,并丰富其环境模型。这将导致更快,更轻松,更强大的机器人部署和操作。在本文中,我们将探讨关于智能如何在代理之间分配的两种选择:集体智能和集中式智能。在集体情报范式下,智能在机器人和摄像机之间相当分散。全球情报源于各个代理商之间的互动,因此没有一个能够处理大多数决策的中央代理商。这某种程度上类似于自然界中通常观察到的自组织过程,那里没有等级制或集中化。在这种情况下,我们假设,当机器人的行为是由一组独立的代理(摄像机)之间的交互作用产生的,那么任何用户都可以将机器人放置在环境的不同位置时,就可以使机器人在先验未知的环境中运行。这些代理,最初是相同的,将能够观察人类和机器人的行为,并行学习,适应并专门控制机器人。在此程度上,我们的摄像机将能够强大地检测和跟踪机器人和人类,发现他们的摄像机邻居,并通过这些摄像机的路线引导机器人导航。同时,机器人只能遵循摄像机的指令并协商障碍物以避免碰撞。另一方面,在集中式智能范式下,一种类型的代理将被分配比其他代理更多的智能。因此,此代理将做出最多的决策和协调,其性能将比其他代理具有更高的重要性。为了探索这种范式,本论文中,中央智能体的角色将由机器人智能体扮演,并且大部分智能将致力于自我定位和导航的任务。在这方面,我们对用于机器人定位任务的不同信息源的优缺点进行了实验研究。研究表明,没有一种信号源在每种情况下都能很好地工作,但是互补传感器的组合可能会导致更强大的定位算法。因此,我们开发了一种机器人定位算法,该算法结合了来自多个传感器的信息。即使在单传感器定位技术通常失败的情况下,该算法也能够提供鲁棒且精确的定位估计。它可以融合任意数量的传感器的信息,即使它们不同步,以不同的数据速率工作或其中一些停止工作也是如此。我们已经使用以下传感器测试了算法:2D激光测距仪,电磁罗盘,WiFi接收卡,无线电接收卡(433 MHz频段),外部摄像头网络以及安装在机器人中的摄像头。我们还设计了无线发射器(motes),并且研究了当定位器能够改变其发射功率时其定位算法的性能。通过一项实验研究,我们证明了这种能力有助于提高无线定位系统的性能。这为主动式本地化的未来打开了大门。,该机器人将能够修改发射机的发射功率,从而主动放弃定位假设。我们的建议是一种通用解决方案,可应用于许多不同的服务机器人应用。作为特定的应用示例,我们将智能空间与过去开发的通用导向机器人集成在一起。该机器人旨在在不同的社交环境中运行,例如博物馆,会议或研究中心的机器人演示。我们的机器人能够检测并跟踪周围的人,跟随周围环境的指导者,从该指导者那里学习感兴趣的路线,并为活动的访问者复制它们。此外,该机器人能够使用手势识别技术和增强现实界面与人类互动。

著录项

  • 作者

    Canedo Rodríguez Adrián;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号