首页> 外文OA文献 >A numerical study on differences in using Navier–Stokes and Reynolds equations for modeling the fluid flow and particle transport in single rock fractures with shear
【2h】

A numerical study on differences in using Navier–Stokes and Reynolds equations for modeling the fluid flow and particle transport in single rock fractures with shear

机译:Navier-Stokes和Reynolds方程用于模拟含剪切的单个岩石裂缝中的流体流动和颗粒传输的差异的数值研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The study on fluid flow and transport processes of rock fractures in most practical applications involves two fundamental issues: the validity of Reynolds equation for fluid flow (as most often assumed) and the effects of shear displacements on the magnitudes and anisotropy of the fluid flow velocity field. The reason for such concerns is that the impact of the surface roughness of rock fractures is still an unresolved challenging issue. The later has been systematically investigated with results showing that shear displacement plays a dominant role on evolutions of fluid velocity fields, for both magnitudes and anisotropy, but the former has not received examinations in details due to the numerical complexities involving solution of the Navier–Stokes (NS) equations and the representations of fracture geometry during shear. The objective of this paper aims to solve this problem through a FEM modeling effort. Applying the COMSOL Multiphysics code (FEM) and assuming a 2D problem, we consider the coupled hydromechanical effect of fracture geometry change due to shear on fluid flow (velocity patterns) and particle transport (streamline/velocity dispersion), using measured topographical data of natural rock fracture surfaces. The fluid flow in the vertical 2D cross-sections of single rock fractures was simulated by solving both the Navier–Stokes and the Reynolds equation, and the particle transport was predicted by the streamline particle tracking method with calculated flow velocity fields (vectors) from the flow simulations, obtaining results such as flow velocity profiles, total flow rates, particle travel time, breakthrough curves and the Péclet number, Pe, respectively. The results obtained using NS and Reynolds equations were compared to illustrate the degree of the validity of the Reynolds equation for general applications in practice since the later is mush more computationally efficient for solving large-scale problems. The flow simulation results show that both the total flow rate and the flow velocity fields in a rough rock fracture predicted by the NS equation were quite different from those predicted by the Reynolds equation. The results show that a roughly 5–10% overestimation on the flow rate is produced when the Reynolds equation is used, and the ideal parabolic velocity profiles defined by the local cubic law, when Reynolds equation is used, is no longer valid, especially when the roughness feature of the fracture surfaces changes with shear. These deviations of flow rate and flow velocity profiles across the fracture aperture have a significant impact on the particle transport behavior and the associated properties, such as the travel time and Péclet number. The deviations increase with increasing flow velocity and become more significant when fracture aperture geometry changes with shear.
机译:在大多数实际应用中,对岩石裂缝的流体流动和输运过程的研究涉及两个基本问题:Reynolds方程对流体流动的有效性(最常被假定)以及剪切位移对流体流速的大小和各向异性的影响领域。引起这种担忧的原因是,岩石裂缝表面粗糙度的影响仍然是一个尚未解决的具有挑战性的问题。对后者进行了系统地研究,结果表明,剪切位移在流速场的大小和各向异性方面都起着主导作用,但是由于涉及Navier-Stokes解的数值复杂性,前者尚未得到详细的检验。 (NS)方程和剪切过程中断裂几何形状的表示。本文的目的旨在通过有限元建模来解决此问题。应用COMSOL Multiphysics代码(FEM)并假设一个2D问题,我们使用自然地形的实测地形数据考虑由于剪切对流体流动(速度模式)和颗粒传输(流线/速度分散)造成的断裂几何形状变化的耦合流体力学效应。岩石破裂面。通过求解Navier–Stokes和Reynolds方程来模拟单个岩石裂缝的垂直二维横截面中的流体流动,并通过流线粒子跟踪方法预测粒子的输运,并从中计算出流速场(矢量)。进行流动模拟,分别获得流速分布图,总流速,颗粒传播时间,穿透曲线和佩克利数Pe等结果。比较了使用NS和Reynolds方程获得的结果,以说明Reynolds方程在实际应用中的有效性,因为后者在解决大规模问题上的计算效率更高。流动模拟结果表明,NS方程预测的粗糙岩石裂缝中的总流速和流速场与Reynolds方程预测的完全不同。结果表明,当使用雷诺方程时,会产生大约5-10%的流量高估,而当使用雷诺方程时,由局部三次定律定义的理想抛物线速度曲线不再有效,尤其是当断裂表面的粗糙度随剪切力而变化。贯穿裂隙孔口的流速和流速分布的这些偏差对颗粒的输送行为和相关的特性(例如行进时间和佩克莱特数)有重大影响。随着流速的增加,偏差会增加,并且当裂缝孔径的几何形状随剪切力而变化时,偏差会变得更大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号