首页> 外文OA文献 >Gray-box modeling for prediction and control of molten steel temperature in tundish
【2h】

Gray-box modeling for prediction and control of molten steel temperature in tundish

机译:灰盒模型用于中间包钢水温度的预测和控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To realize stable production in the steel industry, it is important to control molten steel temperature in a continuous casting process. The present work aims to provide a general framework of gray-box modeling and to develop a gray-box model that predicts and controls molten steel temperature in a tundish (TD temp) with high accuracy. Since the adopted first-principle model (physical model) cannot accurately describe uncertainties such as degradation of ladles, their overall heat transfer coefficient, which is a parameter in the first-principle model, is optimized for each past batch separately, then the parameter is modeled as a function of process variables through a statistical modeling method, random forests. Such a model is termed as a serial gray-box model. Prediction errors of the first-principle model or the serial gray-box model can be compensated by using another statistical model; this approach derives a parallel gray-box model or a combined gray-box model. In addition, the developed gray-box models are used to determine the optimal molten steel temperature in the Ruhrstahl–Heraeus degassing process from the target TD temp, since the continuous casting process has no manipulated variable to directly control TD temp. The proposed modeling and control strategy is validated through its application to real operation data at a steel work. The results show that the combined gray-box model achieves the best performance in prediction and control of TD temp and satisfies the requirement for its industrial application.
机译:为了在钢铁工业中实现稳定的生产,在连续铸造过程中控制钢水温度非常重要。本工作旨在提供灰箱建模的通用框架,并开发一种灰箱模型,该模型可以高精度地预测和控制中间包(TD temp)中的钢水温度。由于所采用的第一原理模型(物理模型)无法准确描述钢包的降解等不确定性,因此,针对每个过去的批次分别优化它们的整体传热系数(作为第一原理模型中的一个参数),然后将该参数设为通过统计建模方法将模型建模为过程变量的函数,即随机森林。这种模型被称为串行灰盒模型。第一性原理模型或串行灰箱模型的预测误差可以通过使用其他统计模型来补偿;这种方法可得出并行灰箱模型或组合灰箱模型。此外,已开发的灰箱模型用于根据目标TD温度确定Ruhrstahl–Heraeus脱气过程中的最佳钢水温度,因为连续铸造过程没有可控制的变量来直接控制TD温度。通过将其应用于钢铁厂的实际运行数据,对所提出的建模和控制策略进行了验证。结果表明,该组合灰箱模型在TD温度的预测和控制中达到了最佳性能,满足了工业应用的要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号