首页> 外文OA文献 >Urban-Area Extraction From Polarimetric SAR Images Using Polarization Orientation Angle
【2h】

Urban-Area Extraction From Polarimetric SAR Images Using Polarization Orientation Angle

机译:利用极化方向角从极化SAR图像中提取市区

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this letter, an algorithm is proposed that robustly extracts urban areas from polarimetric synthetic aperture radar images. Polarization orientation angle (POA), volume scattering power (Pv) derived by four-component decomposition, and total power (TP) are utilized in the proposed algorithm. The dependence of the four decomposition components on POA can be lessened by rotating the elements of the coherency matrix by the POA. However, a level of POA dependence remains even after the correction. The proposed algorithm utilizes POA-corrected components, but pixels are grouped into several categories according to POA. First, urban and farmland training data are selected for each category in a study area. Then, urban and mountain areas are separated from farmland, bare ground, and sea by utilizing the Pv-TP scattergram. Finally, a measure of the POA randomness between neighboring pixels is used to discriminate between urban areas with nearly homogeneous POA and mountain areas with randomly distributed POAs. When performing classification on more than one study area, thresholds manually selected for one of the study areas are used to automatically estimate thresholds for the other areas. An accuracy assessment demonstrates that POA-based categorization and utilization of POA randomness contribute to improving classification accuracy.
机译:在这封信中,提出了一种从极化合成孔径雷达图像中可靠地提取市区的算法。该算法利用了极化取向角(POA),四分量分解得到的体积散射功率(Pv)和总功率(TP)。通过POA旋转相干矩阵的元素,可以减少四个分解成分对POA的依赖性。但是,即使在校正后,POA依存度仍保持不变。该算法利用了POA校正后的分量,但是根据POA将像素分为几类。首先,为研究区域中的每个类别选择城市和农田培训数据。然后,利用Pv-TP散点图将城市和山区与农田,裸露的土地和海洋分开。最后,使用相邻像素之间的POA随机性度量来区分具有几乎均质的POA的城市区域和具有随机分布的POA的山区。在多个研究区域进行分类时,为其中一个研究区域手动选择的阈值将用于自动估计其他区域的阈值。准确性评估表明,基于POA的分类和POA随机性的利用有助于提高分类准确性。

著录项

  • 作者

    Kajimoto M.; Susaki J.;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号