首页> 外文OA文献 >Exploring the Feasibility of Applying Data Mining for Library Reference Service Improvement : A Case Study of Turku Main Library
【2h】

Exploring the Feasibility of Applying Data Mining for Library Reference Service Improvement : A Case Study of Turku Main Library

机译:探索将数据挖掘应用于图书馆参考服务改进的可行性:以图尔库主图书馆为例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Data mining, as a heatedly discussed term, has been studied in various fields. Its possibilities in refining the decision-making process, realizing potential patterns and creating valuable knowledge have won attention of scholars and practitioners. However, there are less studies intending to combine data mining and libraries where data generation occurs all the time. Therefore, this thesis plans to fill such a gap. Meanwhile, potential opportunities created by data mining are explored to enhance one of the most important elements of libraries: reference service. In order to thoroughly demonstrate the feasibility and applicability of data mining, literature is reviewed to establish a critical understanding of data mining in libraries and attain the current status of library reference service. The result of the literature review indicates that free online data resources other than data generated on social media are rarely considered to be applied in current library data mining mandates. Therefore, the result of the literature review motivates the presented study to utilize online free resources. Furthermore, the natural match between data mining and libraries is established. The natural match is explained by emphasizing the data richness reality and considering data mining as one kind of knowledge, an easy choice for libraries, and a wise method to overcome reference service challenges. The natural match, especially the aspect that data mining could be helpful for library reference service, lays the main theoretical foundation for the empirical work in this study.Turku Main Library was selected as the case to answer the research question: whether data mining is feasible and applicable for reference service improvement. In this case, the daily visit from 2009 to 2015 in Turku Main Library is considered as the resource for data mining. In addition, corresponding weather conditions are collected from Weather Underground, which is totally free online. Before officially being analyzed, the collected dataset is cleansed and preprocessed in order to ensure the quality of data mining. Multiple regression analysis is employed to mine the final dataset. Hourly visits are the independent variable and weather conditions, Discomfort Index and seven days in a week are dependent variables. In the end, four models in different seasons are established to predict visiting situations in each season. Patterns are realized in different seasons and implications are created based on the discovered patterns. In addition, library-climate points are generated by a clustering method, which simplifies the process for librarians using weather data to forecast library visiting situation. Then the data mining result is interpreted from the perspective of improving reference service. After this data mining work, the result of the case study is presented to librarians so as to collect professional opinions regarding the possibility of employing data mining to improve reference services. In the end, positive opinions are collected, which implies that it is feasible to utilizing data mining as a tool to enhance library reference service.
机译:作为热门讨论的术语,数据挖掘已在各个领域中得到了研究。它在完善决策过程,实现潜在模式和创造有价值的知识方面的可能性赢得了学者和实践者的关注。但是,很少有研究打算将数据挖掘和库结合在一起,而在这些库中始终会发生数据生成。因此,本文打算填补这一空白。同时,探索了由数据挖掘创造的潜在机会,以增强图书馆最重要的要素之一:参考服务。为了彻底证明数据挖掘的可行性和适用性,对文献进行了回顾,以建立对图书馆数据挖掘的批判性理解,并获得图书馆参考服务的当前状态。文献综述的结果表明,除了在社交媒体上生成的数据以外,免费的在线数据资源很少被认为适用于当前的图书馆数据挖掘任务。因此,文献综述的结果激励了本研究利用在线免费资源。此外,建立了数据挖掘与库之间的自然匹配。通过强调数据丰富性的现实,并考虑将数据挖掘视为一种知识,轻松选择库以及克服参考服务挑战的明智方法,来解释自然匹配。自然的匹配,尤其是数据挖掘可以为图书馆参考服务提供帮助的方面,为本研究的实证工作奠定了主要的理论基础。选择图尔库主图书馆作为案例来回答研究问题:数据挖掘是否可行适用于参考服务改进。在这种情况下,图尔库主图书馆从2009年到2015年的日常访问被视为数据挖掘的资源。另外,从Weather Underground收集了相应的天气条件,该条件是完全免费的。在正式分析之前,对收集的数据集进行清洗和预处理,以确保数据挖掘的质量。采用多元回归分析来挖掘最终数据集。每小时就诊是自变量,天气状况,不适指数和一周中的7天是因变量。最后,建立了不同季节的四个模型来预测每个季节的访问情况。模式在不同的季节中实现,并且根据发现的模式创建含义。此外,通过聚类方法生成图书馆气候点,从而简化了图书馆员使用天气数据来预测图书馆访问情况的过程。然后从改进参考服务的角度解释数据挖掘结果。完成此数据挖掘工作后,将案例研究的结果提交给图书馆员,以收集有关使用数据挖掘来改善参考服务的可能性的专业意见。最后,收集到了积极的意见,这意味着将数据挖掘用作增强图书馆参考服务的工具是可行的。

著录项

  • 作者

    Zhan Ming;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号