首页> 外文OA文献 >Utilization of steelmaking waste materials for production of calcium carbonate (CaCO3)
【2h】

Utilization of steelmaking waste materials for production of calcium carbonate (CaCO3)

机译:利用炼钢废料生产碳酸钙(CaCO3)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The steel industry produces, besides steel, also solid mineral by-products or slags, while it emits large quantities of carbon dioxide (CO2). Slags consist of various silicates and oxides which are formed in chemical reactions between the iron ore and the fluxing agents during the high temperature processing at the steel plant. Currently, these materials are recycled in the ironmaking processes, used as aggregates in construction, or landfilled as waste.The utilization rate of the steel slags can be increased by selectively extracting components from the mineral matrix. As an example, aqueous solutions of ammonium salts such as ammonium acetate, chloride and nitrate extract calcium quite selectively already at ambient temperature and pressure conditions. After the residual solids have been separated from the solution, calcium carbonate can be precipitated by feeding a CO2 flow through the solution.Precipitated calcium carbonate (PCC) is used in different applications as a filler material. Its largest consumer is the papermaking industry, which utilizes PCC because it enhances the optical properties of paper at a relatively low cost. Traditionally, PCC is manufactured from limestone, which is first calcined to calcium oxide, then slaked with water to calcium hydroxide and finally carbonated to PCC. This process emits large amounts of CO2, mainly because of the energy-intensive calcination step.This thesis presents research work on the scale-up of the above-mentioned ammonium salt based calcium extraction and carbonation method, named Slag2PCC. Extending the scope of the earlier studies, it is now shown that the parameters which mainly affect the calcium utilization efficiency are the solid-to-liquid ratio of steel slag and the ammonium salt solvent solution during extraction, the mean diameter of the slag particles, and the slag composition, especially the fractions of total calcium, silicon, vanadium and iron as well as the fraction of free calcium oxide. Regarding extraction kinetics, slag particle size, solid-to-liquid ratio and molar concentration of the solvent solution have the largest effect on the reaction rate.Solvent solution concentrations above 1 mol/L NH4Cl cause leaching of other elements besides calcium. Some of these such as iron and manganese result in solution coloring, which can be disadvantageous for the quality of the PCC product. Based on chemical composition analysis of the produced PCC samples, however, the product quality is mainly similar as in commercial products.Increasing the novelty of the work, other important parameters related to assessment of the PCC quality, such as particle size distribution and crystal morphology are studied as well. As in traditional PCC precipitation process, the ratio of calcium and carbonate ions controls the particle shape; a higher value for [Ca2+]/[CO32-] prefers precipitation of calcite polymorph, while vaterite forms when carbon species are present in excess. The third main polymorph, aragonite, is only formed at elevated temperatures, above 40-50 °C.In general, longer precipitation times cause transformation of vaterite to calcite or aragonite, but also result in particle agglomeration. The chemical equilibrium of ammonium and calcium ions and dissolved ammonia controlling the solution pH affects the particle sizes, too. Initial pH of 12-13 during the carbonation favors nonagglomerated particles with a diameter of 1 μm and smaller, while pH values of 9-10 generate more agglomerates of 10-20 μm.As a part of the research work, these findings are implemented in demonstrationscale experimental process setups. For the first time, the Slag2PCC technology is tested in scale of ~70 liters instead of laboratory scale only. Additionally, design of a setup of several hundreds of liters is discussed. For these purposes various process units such as inclined settlers and filters for solids separation, pumps and stirrers for material transfer and mixing as well as gas feeding equipment are dimensioned and developed.Overall emissions reduction of the current industrial processes and good product quality as the main targets, based on the performed partial life cycle assessment (LCA), it is most beneficial to utilize low concentration ammonium salt solutions for the Slag2PCC process. In this manner the post-treatment of the products does not require extensive use of washing and drying equipment, otherwise increasing the CO2 emissions of the process.The low solvent concentration Slag2PCC process causes negative CO2 emissions; thus, it can be seen as a carbon capture and utilization (CCU) method, which actually reduces the anthropogenic CO2 emissions compared to the alternative of not using the technology. Even if the amount of steel slag is too small for any substantial mitigation of global warming, the process can have both financial and environmental significance for individual steel manufacturers as a means to reduce the amounts of emitted CO2 and landfilled steel slag.Alternatively, it is possible to introduce the carbon dioxide directly into the mixture of steel slag and ammonium salt solution. The process would generate a 60-75% pure calcium carbonate mixture, the remaining 25-40% consisting of the residual steel slag. This calcium-rich material could be re-used in ironmaking as a fluxing agent instead of natural limestone. Even though this process option would require less process equipment compared to the Slag2PCC process, it still needs further studies regarding the practical usefulness of the products.Nevertheless, compared to several other CO2 emission reduction methods studied around the world, the within this thesis developed and studied processes have the advantage of existing markets for the produced materials, thus giving also a financial incentive for applying the technology in practice.
机译:钢铁工业除生产钢铁外,还生产固体矿物副产品或矿渣,同时排放大量的二氧化碳(CO2)。炉渣由各种硅酸盐和氧化物组成,它们是在炼钢厂的高温加工过程中,铁矿石和助熔剂之间发生化学反应而形成的。目前,这些材料在炼铁过程中被回收,用作建筑的集料或作为垃圾掩埋。通过选择性地从矿物基质中提取成分,可以提高钢渣的利用率。例如,铵盐例如乙酸铵,氯化物和硝酸盐的水溶液已经在环境温度和压力条件下相当有选择性地提取钙。从溶液中分离出残留的固体后,可通过向溶液中通入CO2来沉淀碳酸钙。沉淀的碳酸钙(PCC)在不同的应用中用作填充材料。它的最大消费者是造纸工业,它利用PCC是因为它以相对较低的成本提高了纸张的光学性能。传统上,PCC由石灰石制造,首先将其煅烧成氧化钙,然后用水熟成氢氧化钙,最后将其碳酸化为PCC。该过程排放大量的CO2,这主要是由于需要大量的煅烧步骤。本文介绍了上述基于铵盐的钙萃取和碳化方法Slag2PCC的放大研究。扩展了先前研究的范围,现在表明,主要影响钙利用效率的参数是钢渣和萃取过程中的铵盐溶剂溶液的固液比,炉渣颗粒的平均直径,炉渣成分,尤其是钙,硅,钒和铁的总含量以及游离氧化钙的含量。在萃取动力学方面,炉渣粒度,固液比和溶剂溶液的摩尔浓度对反应速率的影响最大。溶剂溶液浓度高于1 mol / L NH4Cl会导致钙以外的其他元素浸出。其中一些(例如铁和锰)会导致溶液着色,这可能对PCC产品的质量不利。但是,根据生产的PCC样品的化学成分分析,产品质量主要与市售产品相似。增加工作的新颖性,与PCC质量评估相关的其他重要参数,例如粒度分布和晶体形态也被研究。与传统的PCC沉淀过程一样,钙离子和碳酸根离子的比例控制着颗粒的形状。较高的[Ca2 +] / [CO32-]值倾向于沉淀方解石多晶型物,而当碳种类过多时会形成球v石。第三种主要的多晶型物文石仅在40-50°C以上的高温下形成。通常,更长的沉淀时间会导致球ate石转变为方解石或文石,但也会导致颗粒团聚。铵和钙离子和溶解的氨的化学平衡控制溶液的pH值也会影响粒径。碳酸化过程中的初始pH值为12-13时,倾向于使用直径为1μm和更小的非团聚颗粒,而pH值为9-10时会产生更多的10-20μm团块。作为研究工作的一部分,这些发现在示范规模的实验过程设置。 Slag2PCC技术首次在约70升的规模而不是仅实验室规模进行了测试。另外,讨论了数百升的装置的设计。为此目的,对各种工艺装置进行了尺寸设计和开发,例如用于固体分离的倾斜沉降器和过滤器,用于物料转移和混合的泵和搅拌器以及供气设备。目前工业过程的总体减排量和良好的产品质量是主要的目标是基于执行的部分生命周期评估(LCA),对于Slag2PCC过程利用低浓度铵盐溶液是最有益的。这样,产品的后处理不需要大量使用洗涤和干燥设备,否则会增加过程的CO2排放量。低溶剂浓度的Slag2PCC过程会导致负的CO2排放。因此,可以将其视为一种碳捕获和利用(CCU)方法,与不使用该技术的替代方法相比,它实际上减少了人为的CO2排放。即使钢渣的量过少,也无法显着缓解全球变暖对于减少钢厂的二氧化碳排放量和填埋的钢渣量,该方法对各个钢厂都具有财务和环境意义,或者可以将二氧化碳直接引入钢渣和铵盐溶液的混合物中。该过程将产生60-75%的纯碳酸钙混合物,其余25-40%由残留的钢渣组成。这种富含钙的材料可以代替天然石灰石重新用作炼铁剂中的助熔剂。尽管与Slag2PCC工艺相比,该工艺方案所需的工艺设备更少,但仍需要对产品的实用性进行进一步研究。尽管如此,与世界范围内研究的其他几种CO2减排方法相比,本论文还是在研究过程具有所生产材料现有市场的优势,因此也为在实践中应用该技术提供了经济上的激励。

著录项

  • 作者

    Mattila Hannu-Petteri;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号