首页> 外文OA文献 >Advanced analysis and design methods for preparative chromatographic separation processes
【2h】

Advanced analysis and design methods for preparative chromatographic separation processes

机译:制备色谱分离过程的高级分析和设计方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Preparative liquid chromatography is one of the most selective separation techniques in thefine chemical, pharmaceutical, and food industries. Several process concepts have beendeveloped and applied for improving the performance of classical batch chromatography. Themost powerful approaches include various single-column recycling schemes, counter-currentand cross-current multi-column setups, and hybrid processes where chromatography iscoupled with other unit operations such as crystallization, chemical reactor, and/or solventremoval unit. To fully utilize the potential of stand-alone and integrated chromatographicprocesses, efficient methods for selecting the best process alternative as well as optimaloperating conditions are needed.In this thesis, a unified method is developed for analysis and design of the following singlecolumnfixed bed processes and corresponding cross-current schemes: (1) batchchromatography, (2) batch chromatography with an integrated solvent removal unit, (3)mixed-recycle steady state recycling chromatography (SSR), and (4) mixed-recycle steadystate recycling chromatography with solvent removal from fresh feed, recycle fraction, orcolumn feed (SSR–SR). The method is based on the equilibrium theory of chromatographywith an assumption of negligible mass transfer resistance and axial dispersion. The designcriteria are given in general, dimensionless form that is formally analogous to that appliedwidely in the so called triangle theory of counter-current multi-column chromatography.Analytical design equations are derived for binary systems that follow competitive Langmuiradsorption isotherm model. For this purpose, the existing analytic solution of the ideal modelof chromatography for binary Langmuir mixtures is completed by deriving missing explicitequations for the height and location of the pure first component shock in the case of a smallfeed pulse. It is thus shown that the entire chromatographic cycle at the column outlet can beexpressed in closed-form.The developed design method allows predicting the feasible range of operating parametersthat lead to desired product purities. It can be applied for the calculation of first estimates ofoptimal operating conditions, the analysis of process robustness, and the early-stageevaluation of different process alternatives.The design method is utilized to analyse the possibility to enhance the performance ofconventional SSR chromatography by integrating it with a solvent removal unit. It is shownthat the amount of fresh feed processed during a chromatographic cycle and thus the productivity of SSR process can be improved by removing solvent. The maximum solventremoval capacity depends on the location of the solvent removal unit and the physical solventremoval constraints, such as solubility, viscosity, and/or osmotic pressure limits. Usually, themost flexible option is to remove solvent from the column feed.Applicability of the equilibrium design for real, non-ideal separation problems is evaluated bymeans of numerical simulations. Due to assumption of infinite column efficiency, thedeveloped design method is most applicable for high performance systems wherethermodynamic effects are predominant, while significant deviations are observed underhighly non-ideal conditions.The findings based on the equilibrium theory are applied to develop a shortcut approach forthe design of chromatographic separation processes under strongly non-ideal conditions withsignificant dispersive effects. The method is based on a simple procedure applied to a singleconventional chromatogram. Applicability of the approach for the design of batch andcounter-current simulated moving bed processes is evaluated with case studies. It is shownthat the shortcut approach works the better the higher the column efficiency and the lower thepurity constraints are.
机译:制备液相色谱法是精细化工,制药和食品工业中最具选择性的分离技术之一。已经开发了几种工艺概念并将其应用于改善经典间歇色谱的性能。最强大的方法包括各种单柱再循环方案,逆流和错流多柱设置,以及将色谱与其他单元操作(例如结晶,化学反应器和/或溶剂去除单元)耦合的混合工艺。为了充分利用独立和集成色谱方法的潜力,需要一种有效的方法,以选择最佳的方法替代方案以及最佳的操作条件。本文开发了一种统一的方法,用于分析和设计以下单柱固定床方法以及相应的方法。交叉流方案:(1)批量色谱法,(2)带集成溶剂去除装置的批量色谱法,(3)混合循环稳态回收色谱(SSR),和(4)混合循环稳态回收色谱法,去除溶剂新鲜饲料,循环级分或立柱饲料(SSR–SR)。该方法基于色谱的平衡理论,假设传质阻力和轴向分散性可忽略不计。设计准则以一般的无量纲形式给出,与形式广泛的所谓逆流多柱色谱三角理论中的形式形式类似。针对遵循竞争性Langmuiradsorption等温模型的二元系统,推导了分析设计方程。为此,通过推导在小进料脉冲情况下纯第一组分激波的高度和位置所缺少的明确方程,可以完成二元朗缪尔混合物理想色谱模型的现有分析解决方案。因此表明,色谱柱出口处的整个色谱循环都可以以封闭形式表达。开发的设计方法可以预测导致所需产品纯度的操作参数的可行范围。该方法可用于计算最佳操作条件的初步估计值,过程稳健性分析以及不同方法替代方法的早期评估。该设计方法可用于分析通过与常规SSR色谱法集成来提高常规SSR色谱法性能的可能性溶剂去除装置。结果表明,通过去除溶剂,可以提高色谱周期内加工的新鲜进料的量,从而提高SSR工艺的生产率。最大溶剂去除能力取决于溶剂去除单元的位置和物理溶剂去除约束,例如溶解度,粘度和/或渗透压极限。通常,最灵活的选择是从塔进料中除去溶剂。平衡设计在实际,非理想分离问题上的适用性通过数值模拟的方法进行评估。由于假定柱效无限大,因此开发的设计方法最适用于以热力学效应为主的高性能系统,而在非理想条件下观察到明显的偏差。基于平衡理论的发现被用于开发设计的捷径方法强非理想条件下色谱分离过程的影响,分散效果显着。该方法基于应用于单个常规色谱图的简单程序。通过案例研究评估了该方法在间歇和逆流模拟移动床工艺设计中的适用性。结果表明,捷径法的效果越好,柱效越高,纯度限制越低。

著录项

  • 作者

    Siitonen Jani;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号