首页> 外文OA文献 >Production of magnesium carbonates from serpentinites for CO2 mineral sequestration : optimisation towards industrial application
【2h】

Production of magnesium carbonates from serpentinites for CO2 mineral sequestration : optimisation towards industrial application

机译:从蛇纹石生产碳酸镁用于固碳CO2矿物:工业应用的优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Global warming is one of the most alarming problems of this century. Initial scepticism concerning its validity is currently dwarfed by the intensification of extreme weather events whilst the gradual arising level of anthropogenic CO2 is pointed out as its main driver. Most of the greenhouse gas (GHG) emissions come from large point sources (heat and power production and industrial processes) and the continued use of fossil fuels requires quick and effective measures to meet the world’s energy demand whilst (at least) stabilizing CO2 atmospheric levels.The framework known as Carbon Capture and Storage (CCS) – or Carbon Capture Utilization and Storage (CCUS) – comprises a portfolio of technologies applicable to large‐scale GHG sources for preventing CO2 from entering the atmosphere. Amongst them, CO2 capture and mineralisation (CCM) presents the highest potential for CO2 sequestration as the predicted carbon storage capacity (as mineral carbonates) far exceeds the estimated levels of the worldwide identified fossil fuel reserves.The work presented in this thesis aims at taking a step forward to the deployment of an energy/cost effective process for simultaneous capture and storage of CO2 in the form of thermodynamically stable and environmentally friendly solid carbonates. R&D work on the process considered here began in 2007 at Åbo Akademi University in Finland. It involves the processing of magnesium silicate minerals with recyclable ammonium salts for extraction of magnesium at ambient pressure and 400‐440⁰C, followed by aqueous precipitation of magnesium in the form of hydroxide, Mg(OH)2, and finally Mg(OH)2 carbonation in a pressurised fluidized bed reactor at ~510⁰C and ~20 bar PCO2 to produce high purity MgCO3.Rock material taken from the Hitura nickel mine, Finland, and serpentinite collected from Bragança, Portugal, were tested for magnesium extraction with both ammonium sulphate and bisulphate (AS and ABS) for determination of optimal operation parameters, primarily: reaction time, reactor type and presence of moisture. Typical efficiencies range from 50 to 80% of magnesium extraction at 350‐450⁰C. In general ABS performs better than AS showing comparable efficiencies at lower temperature and reaction times. The best experimental results so far obtained include 80% magnesium extraction with ABS at 450⁰C in a laboratory scale rotary kiln and 70% Mg(OH)2 carbonation in the PFB at 500⁰C, 20 bar CO2 pressure for 15 minutes.The extraction reaction with ammonium salts is not at all selective towards magnesium. Other elements like iron, nickel, chromium, copper, etc., are also co‐extracted. Their separation, recovery and valorisation are addressed as well and found to be of great importance.The assessment of the exergetic performance of the process was carried out using Aspen Plus® software and pinch analysis technology. The choice of fluxing agent and its recovery method have a decisive sway in the performance of the process: AS is recovered by crystallisation and in general the whole process requires more exergy (2.48–5.09 GJ/tCO2sequestered) than ABS (2.48–4.47 GJ/tCO2sequestered) when ABS is recovered by thermal decomposition. However, the corrosive nature of molten ABS and operational problems inherent to thermal regeneration of ABS prohibit this route. Regeneration of ABS through addition of H2SO4 to AS (followed by crystallisation) results in an overall negative exergy balance (mainly at the expense of low grade heat) but will flood the system with sulphates. Although the ÅA route is still energy intensive, its performance is comparable to conventional CO2 capture methods using alkanolamine solvents. An energy‐neutral process is dependent on the availability and quality of nearby waste heat and economic viability might be achieved with: magnesium extraction and carbonation levels ≥ 90%, the processing of CO2‐containing flue gases (eliminating the expensive capture step) and production of marketable products.
机译:全球变暖是本世纪最令人担忧的问题之一。目前,关于其有效性的最初怀疑与极端天气事件的加剧相形见,而人为二氧化碳的逐渐上升水平被认为是其主要驱动力。大多数温室气体(GHG)排放来自大的点源(热电生产和工业过程),并且继续使用化石燃料需要采取快速有效的措施来满足世界的能源需求,同时(至少)稳定二氧化碳的大气水平称为碳捕集与封存(CCS)或碳捕集利用与封存(CCUS)的框架包括适用于大规模温室气体源的一系列技术,可防止CO2进入大气。其中,由于预测的碳储存能力(作为矿物碳酸盐)远远超过了世界范围内已确定的化石燃料储量的估计水平,因此二氧化碳捕获和矿化(CCM)具有最高的封存二氧化碳潜力。迈出了部署能源/成本有效过程的一步,以热力学稳定和环保的固体碳酸盐形式同时捕获和储存CO2。此处考虑的过程的研发工作始于2007年在芬兰ÅboAkademi大学进行。它涉及用可回收的铵盐处理硅酸镁矿物,以便在环境压力和400-440⁰C的条件下提取镁,然后以氢氧化物,Mg(OH)2的形式水沉淀镁,最后将Mg(OH)2碳酸化在约510°C和约20 bar PCO2的加压流化床反应器中生产高纯度的MgCO3。测试了从芬兰Hitura镍矿中提取的岩料以及从葡萄牙Bragança收集的蛇纹石,并用硫酸铵和亚硫酸氢盐对镁进行了萃取。 (AS和ABS)用于确定最佳操作参数,主要是:反应时间,反应器类型和水分的存在。在350-450⁰C下,典型的镁提取效率为50%至80%。通常,ABS在较低的温度和反应时间下的性能要优于AS,表现出可比的效率。迄今为止获得的最佳实验结果包括:在实验室规模的回转窑中于450⁰C下用ABS萃取80%的镁,以及在500⁰C,20 bar CO2压力下15分钟在PFB中70%的Mg(OH)2碳酸化。盐对镁根本没有选择性。其他元素(如铁,镍,铬,铜等)也可以共萃取。还讨论了它们的分离,回收和增值作用,发现它们非常重要。使用AspenPlus®软件和夹点分析技术对工艺的高能性能进行评估。助熔剂的选择及其回收方法在工艺过程中具有决定性的影响:AS是通过结晶回收的,一般而言,整个过程比ABS(2.48–4.47 GJ / s)多了本能(2.48–5.09 GJ / tCO2的当量)。通过热分解回收ABS)但是,熔融的ABS的腐蚀性和ABS的热再生所固有的操作问题阻止了该路线。通过向AS中添加H2SO4来再生ABS(随后结晶)会导致总体的负火用平衡(主要是以低级热量为代价),但会使系统充满硫酸盐。尽管ÅA路线仍然需要大量能源,但其性能与使用链烷醇胺溶剂的传统CO2捕集方法相当。能量中性过程取决于附近废热的可用性和质量,并且可以通过以下方法实现经济可行性:镁的提取和碳酸化水平≥90%,含CO2烟气的处理(消除了昂贵的捕获步骤)和生产适销对路的产品。

著录项

  • 作者

    Romão Inês;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号