首页> 外文OA文献 >Integrable Models and Geometry of Target Spaces from the Partition Function of N=(2,2) theories on S^2
【2h】

Integrable Models and Geometry of Target Spaces from the Partition Function of N=(2,2) theories on S^2

机译:基于S ^ 2上N =(2,2)个理论的划分函数的目标空间的可积模型和几何

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis we analyze the exact partition function for N=(2,2) supersymmetric theories on the sphere S^2. Especially, its connection to geometry of target spaces of a gauged linear sigma model under consideration is investigated. First of all, such a model has different phases corresponding to different target manifolds as one varies the Fayet-Iliopoulos parameters. It is demonstrated how a single partition function includes information about geometries of all these target manifolds and which operation corresponds to crossing a wall between phases. For a fixed phase we show how one can extract from the partition function the I-function, a central object of Givental's formalism developed to study mirror symmetry. It is in some sense a more fundamental object than the exact Kahler potential, since it is holomorphic in the coordinates of the moduli space (in a very vague sense it is a square root of it), and the main advantage is that one can derive it from the partition function in a more effective way. Both these quantities contain genus zero Gromov--Witten invariants of the target manifold. For manifolds where mirror construction is not known (this happens typically for targets of non-abelian gauged linear sigma models), this method turns out to be the only available one for obtaining these invariants. All discussed features are illustrated on numerous examples throughout the text.ududFurther, we establish a way for obtaining the effective twisted superpotential based on studying the asymptotic behavior of the partition function for large radius of the sphere. Consequently, it allows for connecting the gauged linear sigma model with a quantum integrable system by applying the Gauge/Bethe correspondence of Nekrasov and Shatashvili. The dominant class of examples we study are ''ADHM models``, i.e. gauged linear sigma models with target manifold the moduli space of instantons (on C^2 or C^2/Gamma). For the case of a unitary gauge group we were able to identify the related integrable system, which turned out to be the Intermediate Long Wave system describing hydrodynamics of two layers of liquids in a channel. It has two interesting limits, the Korteweg--deVries integrable system (limit of shallow water with respect to the wavelength) and Benjamin--Ono integrable system (deep water limit). Another integrable model that naturally enters the scene is the (spin) Calogero--Sutherland model. We examine relations among energy eigenvalues of the latter, the spectrum of integrals of motion for Benjamin--Ono and expectation values of chiral correlators in the ADHM model.
机译:在本文中,我们分析了球S ^ 2上N =(2,2)个超对称理论的精确分配函数。特别是,研究了它与所考虑的规范线性sigma模型目标空间几何的关系。首先,随着人们改变Fayet-Iliopoulos参数,这种模型具有对应于不同目标歧管的不同相位。演示了单个分区函数如何包含有关所有这些目标歧管的几何形状的信息,以及哪种操作对应于跨相之间的壁。对于固定阶段,我们展示了如何从分区函数中提取I函数,I函数是纪梵特形式主义研究镜像对称性的中心对象。从某种意义上说,它是比确切的Kahler势更基本的对象,因为它在模空间的坐标中是全纯的(在非常模糊的意义上,它是平方根),并且主要的优点是可以导出它从分区功能中以更有效的方式。这两个量都包含目标流形的零属Gromov-Witten不变量。对于不知道镜像构造的歧管(这通常发生在非阿贝尔计量线性sigma模型的目标),事实证明该方法是获得这些不变量的唯一可用方法。在全文中,所有讨论的特征都在许多示例中进行了说明。 ud ud此外,我们基于研究大半径球面的分区函数的渐近行为,建立了一种获取有效扭曲超电势的方法。因此,它可以通过应用Nekrasov和Shatashvili的Gauge / Bethe对应关系将规范的线性sigma模型与量子可积系统连接。我们研究的主要示例是``ADHM模型'',即具有目标流形的瞬时线性模空间(在C ^ 2或C ^ 2 / Gamma上)的规范线性sigma模型。对于单一规格的仪表组,我们能够识别出相关的可积分系统,该系统是描述通道中两层液体的流体动力学的中间长波系统。它有两个有趣的限制,即Korteweg-deVries可积系统(相对于波长的浅水限制)和Benjamin-Ono可积系统(深水限制)。自然地进入场景的另一个可集成模型是(自旋的)Calogero-Sutherland模型。我们研究了后者的能量特征值,本杰明-奥诺运动积分的谱以及ADHM模型中手性相关因子的期望值之间的关系。

著录项

  • 作者

    Vasko Petr;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号