首页> 外文OA文献 >Cell death neuroprotection and repair mechanisms in a model of rat spinal cord injury in vitro
【2h】

Cell death neuroprotection and repair mechanisms in a model of rat spinal cord injury in vitro

机译:大鼠脊髓损伤模型的细胞死亡神经保护和修复机制

摘要

Nowadays, new spinal cord injury (SCI) cases are frequently due to non traumatic causes, especially vascular disorders. A prerequisite to developing mechanism-based neuroprotective strategies for acute SCI is a full understanding of the early pathophysiological changes to prevent later disability and paralysis. The immediate damage spreads from the initial site through excitotoxicity and metabolic dysfunction (ischemia, free radicals and neuroinflammation) to surrounding tissue (secondary damage). Using an in vitro neonatal rat spinal cord model, an experimental protocol (pathological medium, PM) has been developed to mimic the profound metabolicudperturbation (hypoxia, aglycemia, oxidative stress, acidosis, toxic free radicals) occurring in vivo after ischemic SCI, a condition surprisingly worsened by extracellular Mg2+ (1 mM). The current study sought to identify the cells affected by PM (with Mg2+), and the associated molecular death pathways in the spinal lumbar region which contains the locomotor networks. The results indicated that 1 h PM+Mg2+ application induced delayed pyknosis chiefly in the spinal white matter via overactivation of poly (ADP-ribose) polymerase 1 (PARP1), suggesting cell death mediated by the process of parthanatos and also via caspase 3-dependent apoptosis. Grey matter damage was less intense and concentrated in dorsal horn neurons and motoneurons which became nuclearimmunoreactive for the mitochondrial apoptosis-inducing factor. Moreover, TRPM2 channel expression was enhanced 24 h later in dorsal horn and motoneurons, while TRPM7 channel expression concomitantly decreased. Conversely, TRPM7 expression grew earlier (3 h) in white matter cells, while TRPM2 remained undetectable. Our results show that extracellular Mg2+ amplified the white matter cell death via parthanatos and apoptosis, and motoneuronal degeneration via PARP1-dependent pathways with distinct changes in their TRPM expression. In fact, the PARP-1 inhibitor PJ34, when applied 30 min after the moderate excitotoxic insult, could protect spinal networks controlling locomotion in more than 50 % of preparations. Interestingly, the drug per se strongly increased spontaneous network discharges without cell damage. Glutamate ionotropic receptor blockers suppressed this phenomenon reversibly. Our results suggest that pharmacological inhibition of PARP-1 could prevent damage to the locomotor networks if this procedure had been implemented early after the initial lesion and when the lesion was limited. PJ34 had also a positive effect on PM+Mg2+ treated spinal cords, especially in the white matter after 24 h, both alone or administered together with caspase-3 inhibitor. The neonatal rat in vitro SCI model was also useful to study the activation of endogenous spinal stem cells. We identified the ATF3 transcription factor as a novel dynamic marker for ependymal stem/progenitor cells (nestin, vimentin and SOX2 positive) located around the central canal of the neonatal or adult rat spinal cord. While quiescent ependymal cells showed cytoplasmic ATF3 expression, over 6-24 h in vitro these cells mobilized and acquired intense nuclear ATF3 staining. The migration of ATF3-nuclear positive cells preceded the strong proliferation of ependymal cells occurring after 24 h in vitro. Pharmacological inhibition of MAPK-p38 and JNK/c-Jun, upstream effectors of ATF3 activation, prevented the mobilization of ATF3 nuclear-positive cells. Excitotoxicity or ischemia-like conditions did not enhance migration of ependymal cells at 24 h. ATF3 is, therefore, suggested as a new biomarker of activated migrating stem cells in the rat spinal cord in vitro that represents an advantageous tool to study basic properties of endogenous stem cells.
机译:如今,新的脊髓损伤(SCI)病例通常是由于非创伤性​​原因引起的,尤其是血管疾病。制定基于机制的急性SCI神经保护策略的先决条件是对早期病理生理变化的全面了解,以防止以后的残疾和瘫痪。立即损害从初始部位通过兴奋性毒性和代谢功能障碍(局部缺血,自由基和神经炎症)扩散到周围组织(继发性损害)。使用体外新生大鼠脊髓模型,已开发出一种实验方案(病理介质,PM),以模拟缺血性SCI后在体内发生的深刻的代谢/扰动(缺氧,贫血,氧化应激,酸中毒,有毒自由基),细胞外Mg2 +(1 mM)令人惊讶地恶化了这种状况。当前的研究试图确定受PM(含Mg2 +)影响的细胞,以及包含运动网络的脊柱腰椎区域的相关分子死亡途径。结果表明1 h PM + Mg2 +的应用主要是通过聚(ADP-核糖)聚合酶1(PARP1)的过度激活而在脊髓白质中诱导延迟性py缩症,这表明细胞死亡是由Parthanatos介导的,也取决于caspase 3依赖性的细胞凋亡。灰质损伤较少,集中在背角神经元和运动神经元中,它们对线粒体凋亡诱导因子具有核免疫反应性。此外,背角和运动神经元24小时后TRPM2通道表达增强,而TRPM7通道表达随之降低。相反,TRPM7表达在白质细胞中生长较早(3小时),而TRPM2仍未检测到。我们的研究结果表明,细胞外Mg2 +通过单性腺激素和细胞凋亡放大了白质细胞的死亡,并通过PARP1依赖的途径在其TRPM表达上发生了明显变化,从而导致了神经元变性。实际上,PARP-1抑制剂PJ34在中度兴奋性毒性损伤后30分钟使用,可以保护超过50%的制剂控制运动的脊髓网络。有趣的是,该药物本身大大增加了自发网络放电,而没有细胞损伤。谷氨酸离子受体阻滞剂可逆地抑制了这种现象。我们的结果表明,如果在初始病变后早期和病变受限时实施了该程序,则PARP-1的药理抑制作用可以防止对运动网络的损害。 PJ34单独或与caspase-3抑制剂联合使用对经PM + Mg2 +处理的脊髓也具有积极作用,尤其是在24小时后的白质中。新生大鼠体外SCI模型也可用于研究内源性脊髓干细胞的激活。我们将ATF3转录因子鉴定为位于新生或成年大鼠脊髓中央管周围的室管膜干/祖细胞(nestin,波形蛋白和SOX2阳性)的新型动态标记。静止的室管膜细胞显示细胞质ATF3表达,而在体外6-24小时内,这些细胞动员并获得了强烈的核ATF3染色。 ATF3核阳性细胞的迁移先于体外24 h后发生的室管膜细胞强增殖。 ATF3激活的上游效应子MAPK-p38和JNK / c-Jun的药理抑制作用阻止了ATF3核阳性细胞的动员。兴奋性毒性或类似缺血的条件在24 h并未增强室间隔膜细胞的迁移。因此,建议将ATF3作为体外激活的大鼠脊髓中迁移的干细胞的新生物标记,它是研究内源性干细胞基本特性的有利工具。

著录项

  • 作者

    Bianchetti Elena;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号