首页> 外文OA文献 >Reading spike timing without a clock: intrinsic decoding of spike trains
【2h】

Reading spike timing without a clock: intrinsic decoding of spike trains

机译:无需时钟即可读取峰值时序:峰值序列的固有解码

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The precise timing of action potentials of sensory neurons relative to the time of stimulus presentation carries substantial sensory information that is lost or degraded when these responses are summed over longer time windows. However, it is unclear whether and how downstream networks can access information in precise time-varying neural responses. Here, we review approaches to test the hypothesis that the activity of neural populations provides the temporal reference frames needed to decode temporal spike patterns. These approaches are based on comparing the single-trial stimulus discriminability obtained from neural codes defined with respect to network-intrinsic reference frames to the discriminability obtained from codes defined relative to the experimenter's computer clock. Application of this formalism to auditory, visual and somatosensory data shows that information carried by millisecond-scale spike times can be decoded robustly even with little or no independent external knowledge of stimulus time. In cortex, key components of such intrinsic temporal reference frames include dedicated neural populations that signal stimulus onset with reliable and precise latencies, and low-frequency oscillations that can serve as reference for partitioning extended neuronal responses into informative spike patterns.
机译:相对于刺激呈现时间,感觉神经元的动作电位的精确定时携带大量的感觉信息,当这些响应在较长的时间窗上求和时会丢失或退化。然而,目前尚不清楚下游网络是否以及如何以精确的时变神经反应访问信息。在这里,我们回顾了一些方法来测试以下假设:神经群体的活动提供了解码时间峰值模式所需的时间参考框架。这些方法基于将根据相对于网络固有参考框架定义的神经代码获得的单次刺激可分辨性与根据相对于实验者的计算机时钟定义的代码获得的可分辨性进行比较。这种形式主义对听觉,视觉和体感数据的应用表明,即使很少或没有独立的外部刺激时间知识,也可以对毫秒级尖峰时间所携带的信息进行可靠地解码。在皮层中,这种内在的时间参考框架的关键组成部分包括专用神经群,这些神经群以可靠而精确的潜伏期发出刺激信号,低频振荡可作为参考,将扩展的神经元反应分为丰富的峰值模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号