首页> 外文OA文献 >On the sign characteristics of Hermitian matrix polynomials
【2h】

On the sign characteristics of Hermitian matrix polynomials

机译:关于厄米矩阵多项式的符号特征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

© 2016 The Author(s) The sign characteristics of Hermitian matrix polynomials are discussed, and in particular an appropriate definition of the sign characteristics associated with the eigenvalue infinity. The concept of sign characteristic arises in different forms in many scientific fields, and is essential for the stability analysis in Hamiltonian systems or the perturbation behavior of eigenvalues under structured perturbations. We extend classical results by Gohberg, Lancaster, and Rodman to the case of infinite eigenvalues. We derive a systematic approach, studying how sign characteristics behave after an analytic change of variables, including the important special case of Möbius transformations, and we prove a signature constraint theorem. We also show that the sign characteristic at infinity stays invariant in a neighborhood under perturbations for even degree Hermitian matrix polynomials, while it may change for odd degree matrix polynomials. We argue that the non-uniformity can be resolved by introducing an extra zero leading matrix coefficient.
机译:©2016作者,讨论了埃尔米特矩阵多项式的符号特征,尤其是与特征值无穷大相关的符号特征的适当定义。符号特征的概念在许多科学领域以不同的形式出现,并且对于汉密尔顿系统的稳定性分析或结构扰动下特征值的扰动行为必不可少。我们将Gohberg,Lancaster和Rodman的经典结果扩展到无穷特征值的情况。我们推导了一种系统的方法,研究了变量经过分析性更改后符号特征的行为,包括重要的Möbius变换特殊情况,并证明了签名约束定理。我们还表明,对于偶数阶Hermitian矩阵多项式,在摄动下,无穷远处的符号特性在邻域中保持不变,而对于奇数阶矩阵多项式,其符号特性可能会发生变化。我们认为,可以通过引入额外的零超前矩阵系数来解决非均匀性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号