首页> 外文OA文献 >Decomposition-Based-Sorting and Angle-Based-Selection for Evolutionary Multiobjective and Many-Objective Optimization
【2h】

Decomposition-Based-Sorting and Angle-Based-Selection for Evolutionary Multiobjective and Many-Objective Optimization

机译:演化多目标多目标优化的基于分解的排序和基于角度的选择

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

© 2013 IEEE. Multiobjective evolutionary algorithm based on decomposition (MOEA/D) decomposes a multiobjective optimization problem (MOP) into a number of scalar optimization subproblems and then solves them in parallel. In many MOEA/D variants, each subproblem is associated with one and only one solution. An underlying assumption is that each subproblem has a different Pareto-optimal solution, which may not be held, for irregular Pareto fronts (PFs), e.g., disconnected and degenerate ones. In this paper, we propose a new variant of MOEA/D with sorting-and-selection (MOEA/D-SAS). Different from other selection schemes, the balance between convergence and diversity is achieved by two distinctive components, decomposition-based-sorting (DBS) and angle-based-selection (ABS). DBS only sorts ${L}$ closest solutions to each subproblem to control the convergence and reduce the computational cost. The parameter ${L}$ has been made adaptive based on the evolutionary process. ABS takes use of angle information between solutions in the objective space to maintain a more fine-grained diversity. In MOEA/D-SAS, different solutions can be associated with the same subproblems; and some subproblems are allowed to have no associated solution, more flexible to MOPs or many-objective optimization problems (MaOPs) with different shapes of PFs. Comprehensive experimental studies have shown that MOEA/D-SAS outperforms other approaches; and is especially effective on MOPs or MaOPs with irregular PFs. Moreover, the computational efficiency of DBS and the effects of ABS in MOEA/D-SAS are also investigated and discussed in detail.
机译:©2013 IEEE。基于分解的多目标进化算法(MOEA / D)将多目标优化问题(MOP)分解为多个标量优化子问题,然后并行求解。在许多MOEA / D变体中,每个子问题都与一个且只有一个解决方案相关联。一个基本的假设是,对于不规则的帕累托前沿(PF)(例如,断开的和退化的前沿),每个子问题都有一个不同的帕累托最优解(可能不成立)。在本文中,我们提出了具有排序和选择功能的MOEA / D的新变种(MOEA / D-SAS)。与其他选择方案不同,收敛和多样性之间的平衡是通过两个独特的组件实现的:基于分解的排序(DBS)和基于角度的选择(ABS)。 DBS仅对每个子问题排序$ {L} $个最接近的解决方案,以控制收敛并降低计算成本。参数$ {L} $已根据进化过程进行了自适应。 ABS利用目标空间中解决方案之间的角度信息来维持更细粒度的多样性。在MOEA / D-SAS中,不同的解决方案可以与相同的子问题相关联。并且允许某些子问题没有关联的解决方案,对于具有不同形状的PF的MOP或多目标优化问题(MaOP)更为灵活。全面的实验研究表明,MOEA / D-SAS优于其他方法。对具有不规则PF的MOP或MaOP尤其有效。此外,还对DBS的计算效率和ABS在MOEA / D-SAS中的影响进行了详细研究和讨论。

著录项

  • 作者

    Cai X; Yang Z; Fan Z; Zhang Q;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号