首页> 外文OA文献 >Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures
【2h】

Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures

机译:分布式内存架构上非结构化网格数据的并行体射线广播

摘要

As computing technology continues to advance, computational modeling of scientific and engineering problems produces data of increasing complexity: large in size and unstructured in shape. Volume visualization of such data is a challenging problem. This paper proposes a distributed parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. Both the data and the rendering process are distributed among processors. At each processor, ray-casting of local data is performed independent of the other processors. The global image composing processes, which require inter-processor communication, are overlapped with the local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from two to 128 processors show, on average, about 60% parallel efficiency.
机译:随着计算技术的不断发展,科学和工程问题的计算建模将产生越来越复杂的数据:大型且形状不规则。这种数据的体积可视化是一个挑战性的问题。本文提出了一种分布式并行解决方案,可以使非结构化网格数据的射线投射体积渲染成为现实。数据和渲染过程都分布在处理器之间。在每个处理器上,独立于其他处理器执行本地数据的射线投射。需要处理器间通信的全局图像合成过程与局部光线投射过程重叠,以实现最大的并行效率。该算法与以前的算法有四个方面的不同:它是完全分布式的,较少依赖视图,具有合理的可伸缩性和灵活性。在不使用动态负载平衡的情况下,使用2到128个处理器的Intel Paragon上的测试结果平均显示出约60%的并行效率。

著录项

  • 作者

    Ma Kwan-Liu;

  • 作者单位
  • 年度 1995
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号