首页> 外文OA文献 >Back Propagation Neural Networks for Predicting Ultimate Strengths of Unidirectional Graphite/Epoxy Tensile Specimens
【2h】

Back Propagation Neural Networks for Predicting Ultimate Strengths of Unidirectional Graphite/Epoxy Tensile Specimens

机译:反向传播神经网络,用于预测单向石墨/环氧树脂拉伸试样的极限强度

摘要

The research presented herein demonstrates the feasibility of predicting ultimate strengths in simple composite structures through a neural network analysis of their acoustic emission (AE) amplitude distribution data. A series of eleven ASTM D-3039 unidirectional graphite/epoxy tensile samples were loaded to failure to generate the amplitude distributions for this analysis. A back propagation neural network was trained to correlate the AE amplitude distribution signatures generated during the first 25% of loading with the ultimate strengths of the samples. The network was trained using two sets of inputs: (1) the statistical parameters obtained from a Weibull distribution fit of the amplitude distribution data, and (2) the event frequency (amplitude) distribution itself. The neural networks were able to predict ultimate strengths with a worst case error of -8.99% for the Weibull modeled amplitude distribution data and 3.74% when the amplitude distribution itself was used to train the network. The principal reason for the improved prediction capability of the latter technique lies in the ability of the neural network to extract subtle features from within the amplitude distribution.
机译:本文介绍的研究表明,通过对声发射(AE)振幅分布数据进行神经网络分析,可以预测简单复合结构的极限强度。加载了11个ASTM D-3039单向石墨/环氧拉伸样品系列,但未能生成用于此分析的振幅分布。训练了反向传播神经网络,以将在加载的前25%期间生成的AE振幅分布特征与样本的极限强度相关联。使用两套输入来训练网络:(1)从振幅分布数据的Weibull分布拟合获得的统计参数,以及(2)事件频率(振幅)分布本身。对于Weibull建模的振幅分布数据,神经网络能够以-8.99%的最坏情况误差预测最终强度,而当使用振幅分布本身来训练网络时,则为3.74%。后一种技术改进的预测能力的主要原因在于神经网络从幅度分布内提取微妙特征的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号