首页> 外文OA文献 >Accuracy of schemes with nonuniform meshes for compressible fluid flows
【2h】

Accuracy of schemes with nonuniform meshes for compressible fluid flows

机译:具有非均匀网格的可压缩流体流动方案的准确性

摘要

The accuracy of the space discretization for time-dependent problems when a nonuniform mesh is used is considered. Many schemes reduce to first-order accuracy while a popular finite volume scheme is even inconsistent for general grids. This accuracy is based on physical variables. However, when accuracy is measured in computational variables then second-order accuracy can be obtained. This is meaningful only if the mesh accurately reflects the properties of the solution. In addition, the stability properties of some improved accurate schemes are analyzed and it can be shown that they also allow for larger time steps when Runge-Kutta type methods are used to advance in time.
机译:当使用非均匀网格时,考虑时间相关问题的空间离散化的准确性。许多方案降低到一阶精度,而流行的有限体积方案甚至与通用网格不一致。此准确性基于物理变量。但是,当在计算变量中测量精度时,则可以获得二阶精度。仅当网格精确反映解决方案的属性时,这才有意义。另外,分析了一些改进的精确方案的稳定性,并且可以证明,当使用Runge-Kutta类型的方法进行时间提前时,它们还允许更大的时间步长。

著录项

  • 作者

    Turkel E.;

  • 作者单位
  • 年度 1985
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号