首页> 外文OA文献 >The nonlinear Galerkin method: A multi-scale method applied to the simulation of homogeneous turbulent flows
【2h】

The nonlinear Galerkin method: A multi-scale method applied to the simulation of homogeneous turbulent flows

机译:非线性Galerkin方法:一种用于模拟均匀湍流的多尺度方法

摘要

Using results of Direct Numerical Simulation (DNS) in the case of two-dimensional homogeneous isotropic flows, the behavior of the small and large scales of Kolmogorov like flows at moderate Reynolds numbers are first analyzed in detail. Several estimates on the time variations of the small eddies and the nonlinear interaction terms were derived; those terms play the role of the Reynolds stress tensor in the case of LES. Since the time step of a numerical scheme is determined as a function of the energy-containing eddies of the flow, the variations of the small scales and of the nonlinear interaction terms over one iteration can become negligible by comparison with the accuracy of the computation. Based on this remark, a multilevel scheme which treats differently the small and the large eddies was proposed. Using mathematical developments, estimates of all the parameters involved in the algorithm, which then becomes a completely self-adaptive procedure were derived. Finally, realistic simulations of (Kolmorov like) flows over several eddy-turnover times were performed. The results are analyzed in detail and a parametric study of the nonlinear Galerkin method is performed.
机译:使用二维均质各向同性流情况下的直接数值模拟(DNS)结果,首先详细分析了中等雷诺数下小规模和大尺度Kolmogorov样流的行为。得出了关于小涡旋和非线性相互作用项随时间变化的几种估计。在LES的情况下,这些术语起着雷诺应力张量的作用。由于根据流量的含能涡流确定了数值方案的时间步长,因此与计算精度相比,一次迭代中小尺度和非线性相互作用项的变化可以忽略不计。在此基础上,提出了一种将大涡和大涡区别对待的多层次方案。利用数学发展,推导了算法中涉及的所有参数的估计值,该估计值随后变成了完全自适应的过程。最后,对多个涡流周转时间的流动(类似于Kolmorov)进行了仿真。对结果进行了详细分析,并对非线性Galerkin方法进行了参数研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号