首页> 外文OA文献 >Convolutional encoding of self-dual codes
【2h】

Convolutional encoding of self-dual codes

机译:自对码的卷积编码

摘要

There exist almost complete convolutional encodings of self-dual codes, i.e., block codes of rate 1/2 with weights w, w = 0 mod 4. The codes are of length 8m with the convolutional portion of length 8m-2 and the nonsystematic information of length 4m-1. The last two bits are parity checks on the two (4m-1) length parity sequences. The final information bit complements one of the extended parity sequences of length 4m. Solomon and van Tilborg have developed algorithms to generate these for the Quadratic Residue (QR) Codes of lengths 48 and beyond. For these codes and reasonable constraint lengths, there are sequential decodings for both hard and soft decisions. There are also possible Viterbi-type decodings that may be simple, as in a convolutional encoding/decoding of the extended Golay Code. In addition, the previously found constraint length K = 9 for the QR (48, 24;12) Code is lowered here to K = 8.
机译:自对偶码几乎存在完整的卷积编码,即权重为w,w = 0 mod 4的速率为1/2的分组码。这些码的长度为8m,卷积部分的长度为8m-2,并且是非系统信息长度为4m-1。最后两位是对两个(4m-1)长度奇偶校验序列的奇偶校验。最终信息位补充长度为4m的扩展奇偶校验序列之一。所罗门(Solomon)和范·蒂尔堡(van Tilborg)开发了算法,以生成长度为48或更大长度的二次残差(QR)码的算法。对于这些代码和合理的约束长度,对于硬判决和软判决都有顺序解码。如扩展的格雷码的卷积编码/解码中一样,也可能存在可能很简单的维特比型解码。此外,先前为QR(48,24; 12)码找到的约束长度K = 9在这里降低为K = 8。

著录项

  • 作者

    Solomon G.;

  • 作者单位
  • 年度 1994
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号