首页> 外文OA文献 >Data traffic reduction schemes for Cholesky factorization on asynchronous multiprocessor systems
【2h】

Data traffic reduction schemes for Cholesky factorization on asynchronous multiprocessor systems

机译:异步多处理器系统上用于Cholesky分解的数据流量减少方案

摘要

Communication requirements of Cholesky factorization of dense and sparse symmetric, positive definite matrices are analyzed. The communication requirement is characterized by the data traffic generated on multiprocessor systems with local and shared memory. Lower bound proofs are given to show that when the load is uniformly distributed the data traffic associated with factoring an n x n dense matrix using n to the alpha power (alpha less than or equal 2) processors is omega(n to the 2 + alpha/2 power). For n x n sparse matrices representing a square root of n x square root of n regular grid graph the data traffic is shown to be omega(n to the 1 + alpha/2 power), alpha less than or equal 1. Partitioning schemes that are variations of block assignment scheme are described and it is shown that the data traffic generated by these schemes are asymptotically optimal. The schemes allow efficient use of up to O(n to the 2nd power) processors in the dense case and up to O(n) processors in the sparse case before the total data traffic reaches the maximum value of O(n to the 3rd power) and O(n to the 3/2 power), respectively. It is shown that the block based partitioning schemes allow a better utilization of the data accessed from shared memory and thus reduce the data traffic than those based on column-wise wrap around assignment schemes.
机译:分析了稠密和稀疏对称正定矩阵的Cholesky分解的通信需求。通信需求的特征是在具有本地和共享内存的多处理器系统上生成的数据流量。给出了下界证明以表明,当负载均匀分布时,与使用n分解为α幂(alpha小于或等于2)处理器的nxn密集矩阵相关的数据流量为omega(n等于2 + alpha / 2功率)。对于表示n个规则网格图的nx个平方根的平方根的nxn个稀疏矩阵,数据流量显示为Ω(n等于1 + alpha / 2幂),alpha小于或等于1。描述了块分配方案,并且示出了由这些方案产生的数据业务是渐近最优的。该方案允许在密集数据情况下有效使用多达O(n至2次幂)个处理器,而在稀疏情况下则允许有效使用O(n)个处理器,直到总数据流量达到O(n至3次幂的最大值) )和O(n等于3/2的幂)。结果表明,与基于列的环绕分配方案相比,基于块的分区方案可以更好地利用从共享内存访问的数据,从而减少数据流量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号