首页> 外文OA文献 >Developing Architectures and Technologies for an Evolvable NASA Space Communication Infrastructure
【2h】

Developing Architectures and Technologies for an Evolvable NASA Space Communication Infrastructure

机译:为可扩展的NASA空间通信基础设施开发架构和技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Space communications architecture concepts play a key role in the development and deployment of NASA's future exploration and science missions. Once a mission is deployed, the communication link to the user needs to provide maximum information delivery and flexibility to handle the expected large and complex data sets and to enable direct interaction with the spacecraft and experiments. In human and robotic missions, communication systems need to offer maximum reliability with robust two-way links for software uploads and virtual interactions. Identifying the capabilities to cost effectively meet the demanding space communication needs of 21st century missions, proper formulation of the requirements for these missions, and identifying the early technology developments that will be needed can only be resolved with architecture design. This paper will describe the development of evolvable space communication architecture models and the technologies needed to support Earth sensor web and collaborative observation formation missions; robotic scientific missions for detailed investigation of planets, moons, and small bodies in the solar system; human missions for exploration of the Moon, Mars, Ganymede, Callisto, and asteroids; human settlements in space, on the Moon, and on Mars; and great in-space observatories for observing other star systems and the universe. The resulting architectures will enable the reliable, multipoint, high data rate capabilities needed on demand to provide continuous, maximum coverage of areas of concentrated activities, such as in the vicinity of outposts in-space, on the Moon or on Mars.
机译:太空通信架构概念在NASA未来的探索和科学任务的开发和部署中起着关键作用。部署任务后,与用户的通信链接需要提供最大的信息传递和灵活性,以处理预期的大型和复杂数据集,并实现与航天器和实验的直接交互。在人类和机器人任务中,通信系统需要通过可靠的双向链接来提供最大的可靠性,以进行软件上传和虚拟交互。确定成本有效地满足21世纪飞行任务苛刻的太空通信需求的能力,正确制定这些飞行任务的要求以及确定所需的早期技术发展只能通过架构设计来解决。本文将描述可发展的空间通信体系结构模型的发展以及支持地球传感器网络和协作观测形成任务所需的技术;机器人科学任务,用于详细研究太阳系中的行星,卫星和小物体;探索月球,火星,木卫三,木卫四和小行星的人类任务;太空,月球和火星上的人类住区;以及用于观测其他恒星系统和宇宙的大型太空观测站。最终的架构将实现按需提供的可靠,多点,高数据速率功能,以连续不断地最大程度地覆盖集中活动的区域,例如太空中前哨站附近,月球或火星上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号