首页>
外文OA文献
>More on the decoder error probability for Reed-Solomon codes
【2h】
More on the decoder error probability for Reed-Solomon codes
展开▼
机译:有关Reed-Solomon码的解码器错误概率的更多信息
展开▼
免费
页面导航
摘要
著录项
引文网络
相似文献
相关主题
摘要
The decoder error probability for Reed-Solomon codes (more generally, linear maximum distance separable codes) is examined. McEliece and Swanson offered an upper bound on P sub E (u), the decoder error probability given that u symbol errors occurs. This upper bound is slightly greater than Q, the probability that a completely random error pattern will cause decoder error. By using a combinatoric technique, the principle of inclusion and exclusion, an exact formula for P sub E (u) is derived. The P sub e (u) for the (255, 223) Reed-Solomon Code used by NASA, and for the (31,15) Reed-Solomon code (JTIDS code), are calculated using the exact formula, and the P sub E (u)'s are observed to approach the Q's of the codes rapidly as u gets larger. An upper bound for the expression is derived, and is shown to decrease nearly exponentially as u increases. This proves analytically that P sub E (u) indeed approaches Q as u becomes large, and some laws of large numbers come into play.
展开▼
机译:检查了里德-所罗门码(更一般地,线性最大距离可分离码)的解码器错误概率。 McEliece和Swanson提供了P sub E(u)的上限,考虑到u个符号错误的发生,解码器错误概率。此上限略大于Q,即完全随机的错误模式将导致解码器错误的可能性。通过使用组合技术(包括和排除原理),得出P sub E(u)的精确公式。 NASA使用的(255,223)Reed-Solomon码和(31,15)Reed-Solomon码(JTIDS码)的P sub e(u)使用精确的公式计算,而P sub随着u变大,观察到E(u)迅速接近代码的Q。得出表达式的上限,并且显示出随着u的增加几乎成指数地减少。从分析上证明,随着u变大,P sub E(u)确实接近Q,并且一些大数定律开始起作用。
展开▼