首页> 外文OA文献 >An Analysis of Neptune's Stratospheric Haze Using High-Phase-Angle Voyager Images
【2h】

An Analysis of Neptune's Stratospheric Haze Using High-Phase-Angle Voyager Images

机译:海王星平流层雾度的高角度旅行者图像分析

摘要

We have inverted high-phase-angle Voyager images of Neptune to determine the atmospheric extinction coefficient as a function of altitude and the scattering phase function at a reference altitude. Comparisons between theoretical model and observations help separate the contributions from molecular Rayleigh and aerosol scattering and help determine the variation of the aerosol size, concentration, and scattering properties with altitude. Further comparisons between models and data allow us to place constraints on the location and composition of the hazes, the concentration and downward flux of certain condensible hydrocarbon gases, the eddy diffusion coefficient in the lower stratosphere, and the thermal profile in parts of Neptune's stratosphere. We find that a distinct stratospheric haze layer exists near 12(sub -1, sup +1) mbar in Neptune's lower stratosphere, most probably due to condensed ethane. The derived stratospheric haze production rate of 1.0(sub -0.3, sup +0.2) x 10(exp -15) g cm(exp -2) sec(exp -1) is substantially lower than photochemical model predictions. Evidence for hazes at higher altitudes also exists. Unlike the situation on Uranus, large particles (0.08-0.11 microns) may be present at high altitudes on Neptune (e.g., near 0.5 mbar), well above the region in which we expect the major hydrocarbon species to condense. Near 28 mbar, the mean particle size is about 0.13(sub -0.02, sup +0.02) microns with a concentration of 5(sub -3, sup +3) particles cm(exp -3). The cumulative haze extinction optical depth above 15 mbar in the clear filter is approx. 3 x 10(exp -3), and much of this extinction is due to scattering rather than absorption; thus, if our limb-scan sites are typical, the hazes cannot account for the stratospheric temperature inversion on Neptune and may not contribute significantly to atmospheric heating. We compare the imaging results with the results from other observations, including those of the Voyager Photopolarimeter Subsystem, and discuss differences between Neptune and Uranus.
机译:我们已经反转了海王星的高相角旅行者图像,以确定大气消光系数与海拔的关系,以及散射相在参考海拔的函数。理论模型和观测值之间的比较有助于区分分子瑞利和气溶胶散射的贡献,并有助于确定气溶胶尺寸,浓度和散射特性随海拔高度的变化。模型和数据之间的进一步比较使我们能够对雾度的位置和组成,某些可冷凝烃气体的浓度和向下通量,平流层下部的涡流扩散系数以及海王星平流层部分的热剖面施加约束。我们发现在海王星的低平流层附近的12(sub -1,sup +1)mbar附近存在一个明显的平流层雾度层,这很可能是由于乙烷的冷凝。导出的平流层雾度生产率为1.0(sub -0.3,sup +0.2)x 10(exp -15)g cm(exp -2)sec(exp -1),大大低于光化学模型的预测。也有在更高海拔出现雾霾的证据。与天王星的情况不同,海王星的高海拔地区(例如,接近0.5 mbar)可能会出现大颗粒(0.08-0.11微米),远高于我们预计主要烃类物质凝结的区域。在28 mbar附近,平均粒径约为0.13(sub -0.02,sup +0.02)微米,浓度为5(sub -3,sup +3)cm(exp -3)。在透明滤光片中,累积的消光消光光学深度在15 mbar以上时约为。 3 x 10(exp -3),这种消光大部分是由于散射而不是吸收引起的;因此,如果我们的肢体扫描部位很典型,那么雾霾就无法解释海王星在平​​流层温度的反转,并且可能不会对大气变暖做出重大贡献。我们将成像结果与其他观测结果(包括Voyager光偏振计子系统的观测结果)进行比较,并讨论海王星和天王星之间的差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号