首页> 外文OA文献 >Scalability of Parallel Spatial Direct Numerical Simulations on Intel Hypercube and IBM SP1 and SP2
【2h】

Scalability of Parallel Spatial Direct Numerical Simulations on Intel Hypercube and IBM SP1 and SP2

机译:在Intel Hypercube和IBM SP1和SP2上并行空间直接数值模拟的可伸缩性

摘要

The implementation and performance of a parallel spatial direct numerical simulation (PSDNS) approach on the Intel iPSC/860 hypercube and IBM SP1 and SP2 parallel computers is documented. Spatially evolving disturbances associated with the laminar-to-turbulent transition in boundary-layer flows are computed with the PSDNS code. The feasibility of using the PSDNS to perform transition studies on these computers is examined. The results indicate that PSDNS approach can effectively be parallelized on a distributed-memory parallel machine by remapping the distributed data structure during the course of the calculation. Scalability information is provided to estimate computational costs to match the actual costs relative to changes in the number of grid points. By increasing the number of processors, slower than linear speedups are achieved with optimized (machine-dependent library) routines. This slower than linear speedup results because the computational cost is dominated by FFT routine, which yields less than ideal speedups. By using appropriate compile options and optimized library routines on the SP1, the serial code achieves 52-56 M ops on a single node of the SP1 (45 percent of theoretical peak performance). The actual performance of the PSDNS code on the SP1 is evaluated with a "real world" simulation that consists of 1.7 million grid points. One time step of this simulation is calculated on eight nodes of the SP1 in the same time as required by a Cray Y/MP supercomputer. For the same simulation, 32-nodes of the SP1 and SP2 are required to reach the performance of a Cray C-90. A 32 node SP1 (SP2) configuration is 2.9 (4.6) times faster than a Cray Y/MP for this simulation, while the hypercube is roughly 2 times slower than the Y/MP for this application. KEY WORDS: Spatial direct numerical simulations; incompressible viscous flows; spectral methods; finite differences; parallel computing.
机译:本文记录了在英特尔iPSC / 860超多维数据集以及IBM SP1和SP2并行计算机上并行空间直接数值模拟(PSDNS)方法的实现和性能。用PSDNS代码计算与边界层流中的层流到湍流过渡相关的空间演化扰动。研究了使用PSDNS在这些计算机上执行过渡研究的可行性。结果表明,通过在计算过程中重新映射分布式数据结构,可以在分布式内存并行机上有效地并行化PSDNS方法。提供可伸缩性信息以估计计算成本,以匹配相对于网格点数量变化的实际成本。通过增加处理器数量,使用优化的(与机器相关的库)例程可以实现比线性加速慢的速度。这种结果比线性加速要慢,因为计算成本主要由FFT例程控制,而这却比理想的加速要少。通过在SP1上使用适当的编译选项和优化的库例程,该串行代码在SP1的单个节点上达到52-56 M ops(理论峰值性能的45%)。通过包含170万个网格点的“真实世界”模拟评估了SP1上PSDNS代码的实际性能。 Cray Y / MP超级计算机需要在同一时间在SP1的八个节点上计算此仿真的一个时间步。对于相同的仿真,需要SP1和SP2的32个节点才能达到Cray C-90的性能。对于此模拟,32节点SP1(SP2)配置比Cray Y / MP快2.9(4.6)倍,而超立方体的速度比此应用程序的Y / MP慢2倍。关键词:空间直接数值模拟不可压缩的粘性流;光谱方法有限的差异;并行计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号